mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This is an extension to the original PR https://github.com/pytorch/pytorch/pull/21765 1. Increase the coverage of different opsets support, comments, and blacklisting. 2. Adding backend tests for both caffe2 and onnxruntime on opset 7 and opset 8. 3. Reusing onnx model tests in caffe2 for onnxruntime. Pull Request resolved: https://github.com/pytorch/pytorch/pull/22421 Reviewed By: zrphercule Differential Revision: D16225518 Pulled By: houseroad fbshipit-source-id: 01ae3eed85111a83a0124e9e95512b80109d6aee
386 lines
13 KiB
Python
386 lines
13 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import onnxruntime # noqa
|
|
import torch
|
|
|
|
import numpy as np
|
|
import io
|
|
|
|
from test_pytorch_common import skipIfUnsupportedMinOpsetVersion, skipIfUnsupportedOpsetVersion
|
|
|
|
|
|
import model_defs.word_language_model as word_language_model
|
|
|
|
|
|
def run_model_test(self, model, train, batch_size=2, state_dict=None,
|
|
input=None, use_gpu=True, rtol=0.001, atol=1e-7,
|
|
example_outputs=None, do_constant_folding=True):
|
|
model.eval()
|
|
|
|
if input is None:
|
|
input = torch.randn(batch_size, 3, 224, 224, requires_grad=True)
|
|
|
|
with torch.no_grad():
|
|
if isinstance(input, torch.Tensor):
|
|
input = (input,)
|
|
output = model(*input)
|
|
if isinstance(output, torch.Tensor):
|
|
output = (output,)
|
|
|
|
# export the model to ONNX
|
|
f = io.BytesIO()
|
|
torch.onnx.export(model, input, f,
|
|
opset_version=self.opset_version,
|
|
example_outputs=output)
|
|
|
|
input, _ = torch.jit._flatten(input)
|
|
output, _ = torch.jit._flatten(output)
|
|
|
|
def to_numpy(tensor):
|
|
if tensor.requires_grad:
|
|
return tensor.detach().cpu().numpy()
|
|
else:
|
|
return tensor.cpu().numpy()
|
|
|
|
inputs = list(map(to_numpy, input))
|
|
outputs = list(map(to_numpy, output))
|
|
|
|
# compute onnxruntime output prediction
|
|
ort_sess = onnxruntime.InferenceSession(f.getvalue())
|
|
ort_inputs = dict((ort_sess.get_inputs()[i].name, input) for i, input in enumerate(inputs))
|
|
ort_outs = ort_sess.run(None, ort_inputs)
|
|
|
|
# compare onnxruntime and PyTorch results
|
|
assert len(outputs) == len(ort_outs), "number of outputs differ"
|
|
|
|
# compare onnxruntime and PyTorch results
|
|
[np.testing.assert_allclose(out, ort_out, rtol=rtol, atol=atol) for out, ort_out in zip(outputs, ort_outs)]
|
|
|
|
|
|
class TestONNXRuntime(unittest.TestCase):
|
|
from torch.onnx.symbolic_helper import _export_onnx_opset_version
|
|
opset_version = _export_onnx_opset_version
|
|
|
|
def run_test(self, model, input, rtol=1e-3, atol=1e-7):
|
|
run_model_test(self, model, False, None,
|
|
input=input, rtol=rtol, atol=atol)
|
|
|
|
def run_word_language_model(self, model_name):
|
|
ntokens = 50
|
|
emsize = 5
|
|
nhid = 5
|
|
nlayers = 5
|
|
dropout = 0.2
|
|
tied = False
|
|
batchsize = 5
|
|
model = word_language_model.RNNModel(model_name, ntokens, emsize,
|
|
nhid, nlayers, dropout, tied,
|
|
batchsize)
|
|
x = torch.arange(0, ntokens).long().view(-1, batchsize)
|
|
# Only support CPU version, since tracer is not working in GPU RNN.
|
|
self.run_test(model, (x, model.hidden))
|
|
|
|
def test_word_language_model_RNN_TANH(self):
|
|
self.run_word_language_model("RNN_TANH")
|
|
|
|
def test_word_language_model_RNN_RELU(self):
|
|
self.run_word_language_model("RNN_RELU")
|
|
|
|
def test_word_language_model_LSTM(self):
|
|
self.run_word_language_model("LSTM")
|
|
|
|
def test_word_language_model_GRU(self):
|
|
self.run_word_language_model("GRU")
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_full_trace(self):
|
|
class FullModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.full((3, 4), x, dtype=torch.long)
|
|
|
|
x = torch.tensor(12)
|
|
self.run_test(FullModel(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_full_script(self):
|
|
class FullModelScripting(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return torch.full((3, 4), x, dtype=torch.long)
|
|
|
|
x = torch.tensor(12)
|
|
self.run_test(FullModelScripting(), x)
|
|
|
|
def test_maxpool(self):
|
|
model = torch.nn.MaxPool1d(2, stride=1)
|
|
x = torch.randn(20, 16, 50)
|
|
self.run_test(model, x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_maxpool_with_indices(self):
|
|
model = torch.nn.MaxPool1d(2, stride=1, return_indices=True)
|
|
x = torch.randn(20, 16, 50)
|
|
self.run_test(model, x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(10)
|
|
def test_maxpool_dilation(self):
|
|
model = torch.nn.MaxPool1d(2, stride=1, dilation=2)
|
|
x = torch.randn(20, 16, 50)
|
|
self.run_test(model, x)
|
|
|
|
def test_avgpool(self):
|
|
model = torch.nn.AvgPool1d(2, stride=1)
|
|
x = torch.randn(20, 16, 50)
|
|
self.run_test(model, x)
|
|
|
|
def test_slice_trace(self):
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x[0:1]
|
|
|
|
x = torch.randn(3)
|
|
self.run_test(MyModule(), x)
|
|
|
|
def test_slice_script(self):
|
|
class DynamicSliceModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return x[1:x.size(0)]
|
|
|
|
x = torch.rand(1, 2)
|
|
self.run_test(DynamicSliceModel(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(10)
|
|
def test_flip(self):
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.flip(x, dims=[0])
|
|
|
|
x = torch.tensor(np.arange(6.0).reshape(2, 3))
|
|
self.run_test(MyModule(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_interpolate_scale(self):
|
|
class MyModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.nn.functional.interpolate(x, mode="nearest", scale_factor=2)
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_test(MyModel(), x)
|
|
|
|
# NOTE: Supported in onnxruntime master, enable this after 0.5 release.
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_interpolate_output_size(self):
|
|
class MyModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.nn.functional.interpolate(x, mode="nearest", size=(6, 8))
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_test(MyModel(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(10)
|
|
def test_interpolate_downsample(self):
|
|
class MyModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.nn.functional.interpolate(x, mode="nearest", scale_factor=[1, 1, 0.5, 0.5])
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_test(MyModel(), x)
|
|
|
|
# TODO: enable for opset 10 when ONNXRuntime version will be updated
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_topk(self):
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.topk(x, 3)
|
|
|
|
x = torch.arange(1., 6., requires_grad=True)
|
|
self.run_test(MyModule(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(10)
|
|
def test_topk_script(self):
|
|
class MyModuleDynamic(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x, k):
|
|
return torch.topk(x, k)
|
|
|
|
x = torch.arange(1., 6., requires_grad=True)
|
|
k = torch.tensor(3)
|
|
self.run_test(MyModuleDynamic(), [x, k])
|
|
|
|
def test_layer_norm(self):
|
|
model = torch.nn.LayerNorm([10, 10])
|
|
x = torch.randn(20, 5, 10, 10)
|
|
self.run_test(model, x, rtol=1e-05, atol=1e-07)
|
|
|
|
def test_reduce_log_sum_exp(self):
|
|
class ReduceLogSumExpModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
a = torch.logsumexp(input, dim=0)
|
|
b = torch.logsumexp(input, dim=(0, 1))
|
|
return a + b
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_test(ReduceLogSumExpModel(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_adaptive_max_pool(self):
|
|
model = torch.nn.AdaptiveMaxPool1d((5), return_indices=False)
|
|
x = torch.randn(20, 16, 50, requires_grad=True)
|
|
self.run_test(model, x)
|
|
|
|
def test_maxpool_2d(self):
|
|
model = torch.nn.MaxPool2d(5, padding=(1, 2))
|
|
x = torch.randn(1, 20, 16, 50, requires_grad=True)
|
|
self.run_test(model, x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_max_tensors(self):
|
|
class MaxModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return torch.max(input, other)
|
|
|
|
model = MaxModel()
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 1, requires_grad=True)
|
|
self.run_test(model, (x, y))
|
|
|
|
def test_gt(self):
|
|
class GreaterModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return input > other
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
y = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_test(GreaterModel(), (x, y))
|
|
|
|
x = torch.randint(10, (3, 4), dtype=torch.int32)
|
|
y = torch.randint(10, (3, 4), dtype=torch.int32)
|
|
self.run_test(GreaterModel(), (x, y))
|
|
|
|
def test_gt_scalar(self):
|
|
class GreaterModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return input > 1
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_test(GreaterModel(), x)
|
|
|
|
x = torch.randint(10, (3, 4), dtype=torch.int32)
|
|
self.run_test(GreaterModel(), x)
|
|
|
|
def test_lt(self):
|
|
class LessModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return input > other
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
y = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_test(LessModel(), (x, y))
|
|
|
|
x = torch.randint(10, (3, 4), dtype=torch.int32)
|
|
y = torch.randint(10, (3, 4), dtype=torch.int32)
|
|
self.run_test(LessModel(), (x, y))
|
|
|
|
def test_matmul(self):
|
|
class MatmulModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return torch.matmul(input, other)
|
|
|
|
x = torch.randn(3, 4, requires_grad=True)
|
|
y = torch.randn(4, 5, requires_grad=True)
|
|
self.run_test(MatmulModel(), (x, y))
|
|
|
|
x = torch.randint(10, (3, 4))
|
|
y = torch.randint(10, (4, 5))
|
|
self.run_test(MatmulModel(), (x, y))
|
|
|
|
def test_matmul_batch(self):
|
|
class MatmulModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return torch.matmul(input, other)
|
|
|
|
x = torch.randn(2, 3, 4, requires_grad=True)
|
|
y = torch.randn(2, 4, 5, requires_grad=True)
|
|
self.run_test(MatmulModel(), (x, y))
|
|
|
|
x = torch.randint(10, (2, 3, 4))
|
|
y = torch.randint(10, (2, 4, 5))
|
|
self.run_test(MatmulModel(), (x, y))
|
|
|
|
def test_view(self):
|
|
class ViewModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return input.view(4, 24)
|
|
|
|
x = torch.randint(10, (4, 2, 3, 4), dtype=torch.int32)
|
|
self.run_test(ViewModel(), x)
|
|
|
|
def test_flatten(self):
|
|
class FlattenModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.flatten(input)
|
|
|
|
x = torch.randint(10, (1, 2, 3, 4))
|
|
self.run_test(FlattenModel(), x)
|
|
|
|
def test_flatten2d(self):
|
|
class FlattenModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.flatten(input, 1)
|
|
|
|
x = torch.randint(10, (1, 2, 3, 4))
|
|
self.run_test(FlattenModel(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_tensor_factories(self):
|
|
class TensorFactory(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.zeros(x.size()) + torch.ones(x.size())
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_test(TensorFactory(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_tensor_factories_script(self):
|
|
class TensorFactory(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return torch.zeros(x.shape, dtype=torch.float) + torch.ones(x.shape, dtype=torch.float)
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_test(TensorFactory(), x)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_tensor_like_factories_script(self):
|
|
class TensorFactory(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
zeros = torch.zeros_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu'))
|
|
ones = torch.ones_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu'))
|
|
return zeros + ones
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_test(TensorFactory(), x)
|
|
|
|
|
|
# opset 7 tests
|
|
TestONNXRuntime_opset7 = type(str("TestONNXRuntime_opset7"),
|
|
(unittest.TestCase,),
|
|
dict(TestONNXRuntime.__dict__, opset_version=7))
|
|
|
|
# opset 8 tests
|
|
TestONNXRuntime_opset8 = type(str("TestONNXRuntime_opset8"),
|
|
(unittest.TestCase,),
|
|
dict(TestONNXRuntime.__dict__, opset_version=8))
|
|
|
|
# opset 10 tests
|
|
TestONNXRuntime_opset10 = type(str("TestONNXRuntime_opset10"),
|
|
(unittest.TestCase,),
|
|
dict(TestONNXRuntime.__dict__, opset_version=10))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|