pytorch/torch/optim/adagrad.py
Masaki Kozuki 702c810780 move param's device check to _init_group for fused (#131153)
There could be some cases where the params have the meta device when calling optimizer's dunder init and those params are materialized in the first computation. This change would allow such situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131153
Approved by: https://github.com/mlazos, https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2024-08-17 04:49:47 +00:00

565 lines
20 KiB
Python

# mypy: allow-untyped-defs
from typing import cast, List, Optional, Union
import torch
from torch import Tensor
from .optimizer import (
_default_to_fused_or_foreach,
_device_dtype_check_for_fused,
_differentiable_doc,
_foreach_doc,
_get_scalar_dtype,
_get_value,
_maximize_doc,
_use_grad_for_differentiable,
_view_as_real,
Optimizer,
ParamsT,
)
__all__ = ["Adagrad", "adagrad"]
class Adagrad(Optimizer):
def __init__(
self,
params: ParamsT,
lr: Union[float, Tensor] = 1e-2,
lr_decay: float = 0,
weight_decay: float = 0,
initial_accumulator_value: float = 0,
eps: float = 1e-10,
foreach: Optional[bool] = None,
*,
maximize: bool = False,
differentiable: bool = False,
fused: Optional[bool] = None,
):
if isinstance(lr, Tensor) and lr.numel() != 1:
raise ValueError("Tensor lr must be 1-element")
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= lr_decay:
raise ValueError(f"Invalid lr_decay value: {lr_decay}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if not 0.0 <= initial_accumulator_value:
raise ValueError(
f"Invalid initial_accumulator_value value: {initial_accumulator_value}"
)
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
defaults = dict(
lr=lr,
lr_decay=lr_decay,
eps=eps,
weight_decay=weight_decay,
initial_accumulator_value=initial_accumulator_value,
foreach=foreach,
maximize=maximize,
differentiable=differentiable,
fused=fused,
)
super().__init__(params, defaults)
if fused:
if differentiable:
raise RuntimeError("`fused` does not support `differentiable`")
if foreach:
raise RuntimeError("`fused` and `foreach` cannot be `True` together.")
self._need_device_dtype_check_for_fused = True
for group in self.param_groups:
for p in group["params"]:
state = self.state[p]
state["step"] = (
torch.zeros(
(),
dtype=_get_scalar_dtype(is_fused=group["fused"]),
device=p.device,
)
if group["fused"]
else torch.tensor(0.0, dtype=_get_scalar_dtype())
)
init_value = (
complex(initial_accumulator_value, initial_accumulator_value)
if torch.is_complex(p)
else initial_accumulator_value
)
state["sum"] = torch.full_like(
p, init_value, memory_format=torch.preserve_format
)
def __setstate__(self, state):
super().__setstate__(state)
# define "fused" for
# MYPY error: Name "fused" may be undefined
fused = None
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("maximize", False)
group.setdefault("differentiable", False)
fused = group.setdefault("fused", None)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["step"]
)
if not step_is_tensor:
for s in state_values:
s["step"] = torch.tensor(
float(s["step"]), dtype=_get_scalar_dtype(is_fused=fused)
)
def share_memory(self):
for group in self.param_groups:
for p in group["params"]:
state = self.state[p]
state["sum"].share_memory_()
def _init_group(self, group, params_with_grad, grads, state_sums, state_steps):
has_sparse_grad, has_complex = False, False
for p in group["params"]:
if p.grad is not None:
if group["fused"] and getattr(
self,
"_need_device_dtype_check_for_fused",
True,
):
_device_dtype_check_for_fused(p, cuda_unsupported=True)
self._need_device_dtype_check_for_fused = False
has_sparse_grad |= p.grad.is_sparse
has_complex |= torch.is_complex(p)
params_with_grad.append(p)
grads.append(p.grad)
state = self.state[p]
state_sums.append(state["sum"])
state_steps.append(state["step"])
return has_sparse_grad, has_complex
@_use_grad_for_differentiable
def step(self, closure=None):
"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad: List[Tensor] = []
grads: List[Tensor] = []
state_sums: List[Tensor] = []
state_steps: List[Tensor] = []
has_sparse_grad, has_complex = self._init_group(
group, params_with_grad, grads, state_sums, state_steps
)
adagrad(
params_with_grad,
grads,
state_sums,
state_steps,
lr=group["lr"],
weight_decay=group["weight_decay"],
lr_decay=group["lr_decay"],
eps=group["eps"],
has_sparse_grad=has_sparse_grad,
foreach=group["foreach"],
maximize=group["maximize"],
differentiable=group["differentiable"],
has_complex=has_complex,
fused=group["fused"],
grad_scale=getattr(self, "grad_scale", None),
found_inf=getattr(self, "found_inf", None),
)
return loss
Adagrad.__doc__ = (
r"""Implements Adagrad algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)
\text{ (objective)}, \: \lambda \text{ (weight decay)}, \\
&\hspace{12mm} \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\
&\textbf{initialize} : state\_sum_0 \leftarrow \tau \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm} \tilde{\gamma} \leftarrow \gamma / (1 +(t-1) \eta) \\
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm}state\_sum_t \leftarrow state\_sum_{t-1} + g^2_t \\
&\hspace{5mm}\theta_t \leftarrow
\theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon} \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization`_.
"""
+ rf"""
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, Tensor, optional): learning rate (default: 1e-2)
lr_decay (float, optional): learning rate decay (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
initial_accumulator_value (float, optional): initial value of the
sum of squares of gradients (default: 0)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-10)
{_foreach_doc}
{_maximize_doc}
{_differentiable_doc}
fused (bool, optional): whether the fused implementation (CPU only) is used.
Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16`
are supported. (default: None). Please note that the fused implementations does not
support sparse or complex gradients.
.. _Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization: http://jmlr.org/papers/v12/duchi11a.html
"""
)
def adagrad(
params: List[Tensor],
grads: List[Tensor],
state_sums: List[Tensor],
state_steps: List[Tensor],
fused: Optional[bool] = None,
grad_scale: Optional[Tensor] = None,
found_inf: Optional[Tensor] = None,
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting these as kwargs for now as functional API is compiled by torch/distributed/optim
has_sparse_grad: bool = False,
foreach: Optional[bool] = None,
differentiable: bool = False,
has_complex: bool = False,
*,
lr: float,
weight_decay: float,
lr_decay: float,
eps: float,
maximize: bool,
):
r"""Functional API that performs Adagrad algorithm computation.
See :class:`~torch.optim.Adagrad` for details.
"""
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
# Respect when the user inputs False/True for foreach or fused. We only want to change
# the default when neither have been user-specified. Note that we default to foreach
# and pass False to use_fused. This is not a mistake--we want to give the fused impl
# bake-in time before making it the default, even if it is typically faster.
if fused is None and foreach is None:
_, foreach = _default_to_fused_or_foreach(
params, differentiable, use_fused=False
)
if fused is None:
fused = False
if foreach is None:
foreach = False
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if fused and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with fused optimizers")
if fused and not torch.jit.is_scripting():
func = _fused_adagrad
elif foreach and not torch.jit.is_scripting():
func = _multi_tensor_adagrad
else:
func = _single_tensor_adagrad
func(
params,
grads,
state_sums,
state_steps,
lr=lr,
weight_decay=weight_decay,
lr_decay=lr_decay,
eps=eps,
has_sparse_grad=has_sparse_grad,
maximize=maximize,
differentiable=differentiable,
has_complex=has_complex,
grad_scale=grad_scale,
found_inf=found_inf,
)
def _make_sparse(grad, grad_indices, values):
size = grad.size()
return torch.sparse_coo_tensor(grad_indices, values, size)
def _single_tensor_adagrad(
params: List[Tensor],
grads: List[Tensor],
state_sums: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
lr: float,
weight_decay: float,
lr_decay: float,
eps: float,
has_sparse_grad: bool,
maximize: bool,
differentiable: bool,
has_complex: bool,
):
assert grad_scale is None and found_inf is None
for param, grad, state_sum, step_t in zip(params, grads, state_sums, state_steps):
# update step
step_t += 1
step = _get_value(step_t)
grad = grad if not maximize else -grad
if weight_decay != 0:
if grad.is_sparse:
raise RuntimeError(
"weight_decay option is not compatible with sparse gradients"
)
grad = grad.add(param, alpha=weight_decay)
clr = lr / (1 + (step - 1) * lr_decay)
if grad.is_sparse:
grad = grad.coalesce() # the update is non-linear so indices must be unique
grad_indices = grad._indices()
grad_values = grad._values()
state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2)))
std = state_sum.sparse_mask(grad)
std_values = std._values().sqrt_().add_(eps)
param.add_(
_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr
)
else:
is_complex = torch.is_complex(param)
if is_complex:
grad = torch.view_as_real(grad)
state_sum = torch.view_as_real(state_sum)
param = torch.view_as_real(param)
state_sum.addcmul_(grad, grad, value=1)
if differentiable:
std = state_sum.sqrt() + eps
else:
std = state_sum.sqrt().add_(eps)
param.addcdiv_(grad, std, value=-clr)
if is_complex:
param = torch.view_as_complex(param)
state_sum = torch.view_as_complex(state_sum)
def _multi_tensor_adagrad(
params: List[Tensor],
grads: List[Tensor],
state_sums: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
lr: float,
weight_decay: float,
lr_decay: float,
eps: float,
has_sparse_grad: bool,
maximize: bool,
differentiable: bool,
has_complex: bool,
):
assert not differentiable, "_foreach ops don't support autograd"
assert grad_scale is None and found_inf is None
# Foreach functions will throw errors if given empty lists
if len(params) == 0:
return
grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype(
[params, grads, state_sums, state_steps] # type: ignore[list-item]
)
for (
device_params_,
device_grads_,
device_state_sums_,
device_state_steps_,
), _ in grouped_tensorlists.values():
device_params = cast(List[Tensor], device_params_)
device_grads = cast(List[Tensor], device_grads_)
device_state_sums = cast(List[Tensor], device_state_sums_)
device_state_steps = cast(List[Tensor], device_state_steps_)
device_has_sparse_grad = has_sparse_grad and any(
grad.is_sparse for grad in device_grads
)
if device_has_sparse_grad:
_single_tensor_adagrad(
device_params,
device_grads,
device_state_sums,
device_state_steps,
lr=lr,
weight_decay=weight_decay,
lr_decay=lr_decay,
eps=eps,
has_sparse_grad=True,
maximize=maximize,
differentiable=differentiable,
has_complex=has_complex,
grad_scale=grad_scale,
found_inf=found_inf,
)
continue
# Handle complex parameters
if has_complex:
_view_as_real(device_params, device_grads, device_state_sums)
if maximize:
device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment]
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if not torch._utils.is_compiling() and device_state_steps[0].is_cpu:
torch._foreach_add_(
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0
)
else:
torch._foreach_add_(device_state_steps, 1)
if weight_decay != 0:
# Re-use the intermediate memory (device_grads) already allocated for maximize
if maximize:
torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
else:
device_grads = torch._foreach_add( # type: ignore[assignment]
device_grads, device_params, alpha=weight_decay
)
minus_clr = [
-lr / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps
]
torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1)
std = torch._foreach_sqrt(device_state_sums)
torch._foreach_add_(std, eps)
if weight_decay != 0 or maximize:
# Again, re-use the intermediate memory (device_grads) already allocated
torch._foreach_mul_(device_grads, minus_clr)
numerator = device_grads
else:
numerator = torch._foreach_mul(device_grads, minus_clr) # type: ignore[assignment]
torch._foreach_addcdiv_(device_params, numerator, std)
def _fused_adagrad(
params: List[Tensor],
grads: List[Tensor],
state_sums: List[Tensor],
state_steps: List[Tensor],
grad_scale: Optional[Tensor],
found_inf: Optional[Tensor],
*,
lr: float,
weight_decay: float,
lr_decay: float,
eps: float,
has_sparse_grad: bool,
maximize: bool,
differentiable: bool,
has_complex: bool,
) -> None:
if not params:
return
if has_sparse_grad or has_complex:
raise RuntimeError("`fused` does not support sparse grad or complex param")
if differentiable:
raise RuntimeError(
"adagrad with fused=True does not support differentiable=True"
)
grad_scale_dict = (
{grad_scale.device: grad_scale} if grad_scale is not None else None
)
found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
[params, grads, state_sums, state_steps] # type: ignore[list-item]
)
for (device, _), (
(
device_params_,
device_grads_,
device_state_sums_,
device_state_steps_,
),
_,
) in grouped_tensors.items():
device_params = cast(List[Tensor], device_params_)
device_grads = cast(List[Tensor], device_grads_)
device_state_sums = cast(List[Tensor], device_state_sums_)
device_state_steps = cast(List[Tensor], device_state_steps_)
device_grad_scale, device_found_inf = None, None
if grad_scale is not None and grad_scale_dict is not None:
if device not in grad_scale_dict:
grad_scale_dict[device] = grad_scale.to(device, non_blocking=True) # type: ignore[index]
device_grad_scale = grad_scale_dict[device] # type: ignore[index]
if found_inf is not None and found_inf_dict is not None:
if found_inf not in found_inf_dict:
found_inf_dict[device] = found_inf.to(device, non_blocking=True) # type: ignore[index]
device_found_inf = found_inf_dict[device] # type: ignore[index]
torch._foreach_add_(device_state_steps, 1)
torch._fused_adagrad_(
device_params,
device_grads,
device_state_sums,
device_state_steps,
lr=lr,
lr_decay=lr_decay,
weight_decay=weight_decay,
eps=eps,
maximize=maximize,
grad_scale=device_grad_scale,
found_inf=device_found_inf,
)
if device_found_inf is not None:
torch._foreach_sub_(
device_state_steps, [device_found_inf] * len(device_state_steps)
)