pytorch/caffe2/python/memonger_test.py
2016-07-21 11:26:41 -07:00

53 lines
2.4 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from caffe2.python import workspace, cnn, memonger
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
from hypothesis import given
class MemongerTest(hu.HypothesisTestCase):
@given(input_dim=st.integers(min_value=1, max_value=10),
output_dim=st.integers(min_value=1, max_value=10),
batch_size=st.integers(min_value=1, max_value=10),
do=st.sampled_from(hu.device_options))
def test_simple_memonger(self, input_dim, output_dim, batch_size, do):
m = cnn.CNNModelHelper()
fc1 = m.FC("data", "fc1", dim_in=input_dim, dim_out=output_dim)
fc2 = m.FC(fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
fc3 = m.FC(fc2, "fc3", dim_in=output_dim, dim_out=output_dim)
fc3.Relu([], fc3)\
.Softmax([], "pred") \
.LabelCrossEntropy(["label"], ["xent"]) \
.AveragedLoss([], "loss")
input_to_grad = m.AddGradientOperators(["loss"])
m.net.Proto().device_option.CopyFrom(do)
m.param_init_net.Proto().device_option.CopyFrom(do)
static_blobs = \
[o for op in m.param_init_net.Proto().op for o in op.output] + \
["data", "label", "loss", input_to_grad["fc1_w"]]
optimization = memonger.optimize_interference(m.Proto(), static_blobs)
data = np.random.randn(batch_size, input_dim).astype(np.float32)
label = np.random.randint(
low=0, high=output_dim, size=(batch_size,)).astype(np.int32)
workspace.RunNetOnce(m.param_init_net)
workspace.FeedBlob("data", data, device_option=do)
workspace.FeedBlob("label", label, device_option=do)
workspace.RunNetOnce(m.net)
loss = workspace.FetchBlob("loss")
grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
workspace.RunNetOnce(optimization.net)
optimized_loss = workspace.FetchBlob("loss")
optimized_grad = workspace.FetchBlob(str(input_to_grad["fc1_w"]))
np.testing.assert_almost_equal(loss, optimized_loss)
np.testing.assert_almost_equal(grad, optimized_grad)
stats = memonger.compute_statistics(optimization.assignments)
self.assertLess(stats.optimized_nbytes, stats.baseline_nbytes)