pytorch/caffe2/python/caffe2_python.h
Yangqing Jia bcea409c82 sync
2016-07-28 15:06:43 -07:00

249 lines
8.0 KiB
C++

#pragma once
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#define PY_ARRAY_UNIQUE_SYMBOL caffe2_python_ARRAY_API
#include <numpy/arrayobject.h>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <sstream>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2.pb.h"
namespace caffe2 {
/**
* @brief PythonThreadStateGuard enables one to release GIL in a specific
* block of code.
*
* This is a more C++ way to deal with Python's Py_BEGIN_ALLOW_THREADS and
* Py_END_ALLOW_THREADS. It is also exception safe in the sense that when
* instantiated in a try block, if an C++ exception ever happens it makes sure
* that the catch block will take place after the GIL is reaquired.
*/
class PythonThreadStateGuard {
public:
PythonThreadStateGuard() : saved_state_(PyEval_SaveThread()) {}
~PythonThreadStateGuard() {
PyEval_RestoreThread(saved_state_);
}
private:
PyThreadState* saved_state_;
DISABLE_COPY_AND_ASSIGN(PythonThreadStateGuard);
};
// Two macros to help wrapping python c extension functions so that if caffe2
// throws an EnforceNotMet exception, we catch it and convert it to a Python
// exception.
//
// Note that these two macros should appear in pairs, because the first macro
// opens an unclosed block.
//
// If you want to release the GIL inside the chunk of code, use
// BEGIN_CAFFE2_PY_EXCEPTION_HANDLING_WITH_GUARD.
#define BEGIN_CAFFE2_PY_EXCEPTION_HANDLING \
try { \
do {} while(false)
#define BEGIN_CAFFE2_PY_EXCEPTION_HANDLING_WITH_GUARD \
try { \
::caffe2::PythonThreadStateGuard _thread_state_guard; \
do {} while(false)
#define END_CAFFE2_PY_EXCEPTION_HANDLING \
} catch (const ::caffe2::EnforceNotMet& err) { \
PyErr_SetString(PyExc_RuntimeError, err.msg().c_str()); \
return nullptr; \
} \
do {} while(false)
inline string PyBytesToStdString(PyObject* pystring) {
return string(PyBytes_AsString(pystring), PyBytes_Size(pystring));
}
inline PyObject* StdStringToPyBytes(const string& str) {
return PyBytes_FromStringAndSize(str.c_str(), str.size());
}
inline PyObject* StdStringToPyUnicode(const string& str) {
return PyUnicode_FromStringAndSize(str.c_str(), str.size());
}
inline void PyErr_SetString(PyObject* type, const string& str) {
PyErr_SetString(type, str.c_str());
}
class BlobFetcherBase {
public:
virtual ~BlobFetcherBase();
virtual PyObject* Fetch(const Blob& blob) = 0;
};
class BlobFeederBase {
public:
virtual ~BlobFeederBase();
virtual PyObject* Feed(const DeviceOption& option, PyArrayObject* array,
Blob* blob) = 0;
};
CAFFE_DECLARE_TYPED_REGISTRY(
BlobFetcherRegistry,
CaffeTypeId,
BlobFetcherBase);
#define REGISTER_BLOB_FETCHER(id, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobFetcherRegistry, id, __VA_ARGS__)
inline unique_ptr<BlobFetcherBase> CreateFetcher(CaffeTypeId id) {
return BlobFetcherRegistry()->Create(id);
}
CAFFE_DECLARE_TYPED_REGISTRY(
BlobFeederRegistry,
int,
BlobFeederBase);
#define REGISTER_BLOB_FEEDER(device_type, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobFeederRegistry, device_type, __VA_ARGS__)
inline unique_ptr<BlobFeederBase> CreateFeeder(int device_type) {
return BlobFeederRegistry()->Create(device_type);
}
static_assert(sizeof(int) == sizeof(int32_t),
"We make an assumption that int is always int32 for numpy "
"type mapping.");
int CaffeToNumpyType(const TypeMeta& meta);
const TypeMeta& NumpyTypeToCaffe(int numpy_type);
template <class Context>
class TensorFetcher : public BlobFetcherBase {
public:
PyObject* Fetch(const Blob& blob) override {
const Tensor<Context>& tensor = blob.Get<Tensor<Context> >();
Context context;
CHECK_GE(tensor.size(), 0);
std::vector<npy_intp> npy_dims;
for (const auto dim : tensor.dims()) {
npy_dims.push_back(dim);
}
int numpy_type = CaffeToNumpyType(tensor.meta());
if (numpy_type == -1) {
PyErr_SetString(
PyExc_TypeError,
MakeString("This tensor's data type is not supported: ",
tensor.meta().name(), "."));
return nullptr;
}
PyObject* array = PyArray_SimpleNew(
tensor.ndim(), npy_dims.data(), numpy_type);
void* outPtr = static_cast<void*>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(array)));
if (numpy_type == NPY_OBJECT) {
PyObject** outObj = reinterpret_cast<PyObject**>(outPtr);
auto* str = tensor.template data<std::string>();
for (int i = 0; i < tensor.size(); ++i) {
outObj[i] = PyBytes_FromStringAndSize(str->data(), str->size());
str++;
// cleanup on failure
if (outObj[i] == nullptr) {
for (int j = 0; j < i; ++j) {
Py_DECREF(outObj[j]);
}
Py_DECREF(array);
PyErr_SetString(
PyExc_TypeError,
"Failed to allocate string for ndarray of strings.");
return nullptr;
}
}
return array;
}
// Now, copy the data to the tensor.
// TODO(Yangqing): Right now, to make things consistent between CPU and
// GPU, we always do a data copy. This is not necessary for CPU and
// read-only cases, so we may want to make it a non-copy.
context.template CopyBytes<Context, CPUContext>(
tensor.nbytes(),
tensor.raw_data(),
outPtr);
context.FinishDeviceComputation();
return array;
}
};
template <class Context>
class TensorFeeder : public BlobFeederBase {
public:
virtual PyObject* Feed(const DeviceOption& option,
PyArrayObject* original_array,
Blob* blob) {
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
const auto npy_type = PyArray_TYPE(array);
const TypeMeta& meta = NumpyTypeToCaffe(npy_type);
if (meta.id() == 0) {
PyErr_SetString(
PyExc_TypeError,
MakeString("This numpy data type is not supported: ",
PyArray_TYPE(array), "."));
return nullptr;
}
Context context(option);
context.SwitchToDevice();
Tensor<Context>* tensor =
blob->GetMutable<Tensor<Context> >();
// numpy requires long int as its dims.
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
std::vector<TIndex> dims;
for (int i = 0; i < ndim; ++i) {
dims.push_back(npy_dims[i]);
}
tensor->Resize(dims);
// Now, copy the data to the tensor.
switch (npy_type) {
case NPY_OBJECT: {
PyObject** input = reinterpret_cast<PyObject**>(PyArray_DATA(array));
auto* outPtr = tensor->template mutable_data<std::string>();
for (int i = 0; i < tensor->size(); ++i) {
char* str;
Py_ssize_t strSize;
if (PyBytes_AsStringAndSize(input[i], &str, &strSize) == -1) {
PyErr_SetString(
PyExc_TypeError,
"Unsupported python object type passed into ndarray.");
return nullptr;
}
outPtr[i] = std::string(str, strSize);
}
} break;
default:
context.template CopyBytes<CPUContext, Context>(
tensor->size() * meta.itemsize(),
static_cast<void*>(PyArray_DATA(array)),
tensor->raw_mutable_data(meta));
}
context.FinishDeviceComputation();
Py_XDECREF(array);
Py_RETURN_TRUE;
}
};
} // namespace caffe2
extern "C" {
PyMethodDef* GetCaffe2PythonMethods();
void common_init_libcaffe2_python_cpu();
}