pytorch/benchmarks
Christian Puhrsch b192e7e415 Support non-contiguous NestedTensors for elementwise ops (#87888)
Enables benchmarking of math path of sdp kernel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87888
Approved by: https://github.com/drisspg
2022-10-28 11:26:17 +00:00
..
cpp [NVFuser] Upstream push 0907 (#84626) 2022-09-23 20:29:48 +00:00
distributed Fix use-dict-literal lint (#83718) 2022-08-24 00:26:46 +00:00
dynamo [dynamo][benchmarks] Prepone Cold start setup (#87913) 2022-10-28 02:41:13 +00:00
fastrnns [libkineto] Re-enable user-annotations in PyTorch (#75601) 2022-04-26 23:54:22 +00:00
framework_overhead_benchmark
functional_autograd_benchmark Added functorch to functional_autograd_benchmark 2022-04-22 14:04:26 +00:00
fuser Benchmarks for various fusers (#67622) 2021-11-04 18:57:17 -07:00
instruction_counts Fix import of instruction count benchmark (#85359) 2022-09-21 17:17:47 +00:00
nested Use CUTLASS GEMM for NT bmm (#85894) 2022-10-18 23:11:47 +00:00
operator_benchmark Improve interpolate() speed for channels_last CPU images and masks (#86361) 2022-10-11 16:17:36 +00:00
overrides_benchmark Use classmethods for overrides (#64841) 2021-09-17 08:32:49 -07:00
profiler_benchmark
record_function_benchmark
serialization
sparse
static_runtime [Static Runtime] Move PrepackWeights to internal-only graph passes (#87799) 2022-10-28 01:28:34 +00:00
tensorexpr Fix some typos. 2022-04-11 21:55:59 +00:00
transformer Support non-contiguous NestedTensors for elementwise ops (#87888) 2022-10-28 11:26:17 +00:00
compare-fastrnn-results.py
compare.sh
README.md
upload_scribe.py Fix benchmark's import module and remove its usage of tools.stats.scribe (#61808) 2021-07-19 09:45:05 -07:00

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite