pytorch/torch/testing/_internal/common_fsdp.py
Yanli Zhao b15212c62b enable backward pass computation and communication overlap by prefetching all gather (#70235)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70235

address comments in https://github.com/pytorch/pytorch/pull/69282:
Have fixed a few corner cases for prefetching full parameters in post backward hook.

After benchmarking, prefetching full parameters in the pre-backward hook has the best performance and stable but at cost of increased memory; prefetching full parameters in the post-backward hook did not see expected performance, also failed in a few corner cases (fixed) although there is no memory increase. The main issue is that post backward hook fire order is not consistent with opposite of forward computation order, so incorrectly prefetched all gather could delay the really needed all gather in the single NCCL stream and cause some layer's computation delay.

So putting  these two algorithms as two configurable experimental algorithms for now

prefetch full parameters at pre-backward hook:

It is observed from past traces that all gather ops are not triggered until current layer's backward pass starts to compute, also for some models previous layers' reduce scatter is scheduled before next layer's all gather ops, since all gather and reduce scatter are in the same nccl stream, this case could result in backward pass has no communication and computation overlap.

To explicitly make next layers' all gather scheduled while previous layers' backward computation is running, we can prefetch next layers' all gather full params. This can help 1) both all gather and reduce scatter are overlapped with computation deterministically 2) only prefetch one layer's all gather full parameters, to avoid increasing too much memories.

The implementation borrowed the idea from facebookresearch/fairscale#865, where forward graph order is recorded in the forward pass.

In the backward pass, this PR prefetches all gather full parameter in current layer's pre-backward hook, instead of prefetching in current layer's post backward hook in facebookresearch/fairscale#865. Also make sure all gather streams are synced properly.

Experiments showed 10% memory increase and 20% latency speed up for 1GB roberta model in a slow network environment.

Test Plan: unit tests

Reviewed By: rohan-varma

Differential Revision: D33252795

fbshipit-source-id: 4e2f47225ba223e7429b0dcaa89df3634bb70050
2021-12-22 23:02:46 -08:00

519 lines
18 KiB
Python

# Owner(s): ["oncall: distributed"]
from contextlib import suppress
from enum import Enum
import os
import sys
from unittest import mock
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._fsdp import FullyShardedDataParallel, CPUOffload
from torch.distributed._fsdp.fully_sharded_data_parallel import (
TrainingState_,
)
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
FILE_SCHEMA,
get_cycles_per_ms,
)
class FSDPInitMode(Enum):
# Move model to CUDA before wrap
CUDA_BEFORE = 1
# Move model to CUDA after wrap
CUDA_AFTER = 2
# Don't move model to CUDA at all.
CUDA_NEVER = 3
# get full params of a model recursively. Note that if CPU offloading, it will
# also automatically move the parameters to GPU, due to _rebuild_full_params
# call.
def get_full_params(model, recurse=True):
if recurse:
# get all params for any nested FSDP instances.
for module in model.modules():
if isinstance(module, FullyShardedDataParallel):
get_full_params(module, recurse=False)
else:
torch.cuda.synchronize()
model._rebuild_full_params()
torch.cuda.synchronize()
if model.module.flat_param is not None:
model.module._unflatten_params()
def _maybe_cuda(model, move_to_cuda):
return model.cuda() if move_to_cuda else model
def _maybe_wrap_fsdp(model, wrap_fsdp, *args, **kwargs):
return (
model if not wrap_fsdp
else FullyShardedDataParallel(model, *args, **kwargs)
)
class DummyProcessGroup:
def __init__(self, rank: int, size: int):
self._rank = rank
self._size = size
def rank(self) -> int:
return self._rank
def size(self) -> int:
return self._size
class TransformerWithSharedParams(nn.Module):
def __init__(
self, group, *args, d_vocab=23, d_model=16, add_bn=True,
fsdp_init_mode=FSDPInitMode.CUDA_AFTER, **kwargs
):
super().__init__()
self.rank = group.rank()
self.world_size = group.size()
torch.manual_seed(0) # keep everything deterministic
assert (
d_vocab >= 12
), "dim of vocab should be larger than 12, as we use torch.arange(12) as input"
self.embed_tokens = nn.Embedding(d_vocab, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
num_encoder_layers=2,
num_decoder_layers=2,
dim_feedforward=8,
dropout=0.1,
)
self.output_proj = nn.Linear(d_model, d_vocab)
# share the embedding and output projection weights
self.output_proj.weight = self.embed_tokens.weight
self.register_buffer(
"vocab_bias", self.embed_tokens.weight.new_ones((d_model,))
)
self.register_buffer("long_buffer", torch.zeros_like(self.vocab_bias, dtype=torch.long)) # type: ignore[arg-type]
self.bs = 2
self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity()
move_to_cuda = fsdp_init_mode == FSDPInitMode.CUDA_BEFORE
self = _maybe_cuda(self, move_to_cuda)
def get_input(self, device):
torch.manual_seed(1 + self.rank) # keep everything deterministic
src = torch.arange(12, device=device).view(6, self.bs) # T x B
tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs) # T x B
return (src, tgt)
def forward(self, src_ids, tgt_ids):
src = self.embed_tokens(src_ids)
src = src + self.vocab_bias + self.long_buffer.type_as(src) # type: ignore[operator]
tgt = self.embed_tokens(tgt_ids)
tgt = self.bn(tgt)
x = self.transformer(src, tgt)
return self.output_proj(x)
def get_loss(self, input, output):
_, tgt = input
return nn.functional.cross_entropy(
output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum"
)
def run_backward(self, loss):
loss.backward()
class NestedWrappedModule(nn.Module):
def __init__(self, group, wrap_fsdp, *args, wrap_everything=False, fsdp_init_mode=FSDPInitMode.CUDA_AFTER, **kwargs):
super().__init__()
self.rank = group.rank()
self.world_size = group.size()
move_to_cuda = fsdp_init_mode == FSDPInitMode.CUDA_BEFORE
def _maybe_wrap(layer):
if wrap_fsdp:
return FullyShardedDataParallel(layer, group, *args, **kwargs)
return layer
torch.manual_seed(0) # keep everything deterministic
if wrap_everything:
self.module = nn.Sequential(
_maybe_wrap(_maybe_cuda(nn.Linear(8, 4), move_to_cuda)),
_maybe_wrap(_maybe_cuda(nn.Linear(4, 16), move_to_cuda)),
_maybe_wrap(_maybe_cuda(nn.Linear(16, 4), move_to_cuda)),
_maybe_wrap(_maybe_cuda(nn.Linear(4, 8), move_to_cuda)),
)
else:
self.module = nn.Sequential(
_maybe_cuda(nn.Linear(8, 4), move_to_cuda),
_maybe_wrap(
nn.Sequential(
_maybe_wrap(_maybe_cuda(nn.Linear(4, 16), move_to_cuda)),
_maybe_cuda(nn.Linear(16, 16), move_to_cuda),
),
),
_maybe_wrap(_maybe_cuda(nn.Linear(16, 4), move_to_cuda)),
_maybe_cuda(nn.Linear(4, 8), move_to_cuda),
)
def get_input(self, device):
torch.manual_seed(1 + self.rank) # keep everything deterministic
return (torch.rand(4, 8, device=device),)
def forward(self, x):
return self.module(x)
def get_loss(self, input, output):
loss = output.sum()
return loss
def run_backward(self, loss):
loss.backward()
class ModuleWithDelay(nn.Module):
def __init__(self, module, delay_after_loss_ms=0, delay_before_reduction_ms=0):
super().__init__()
self.delay_after_loss_ms = delay_after_loss_ms
self.delay_before_reduction_ms = delay_before_reduction_ms
self.module = module
def get_input(self, device):
return self.module.get_input(device)
def forward(self, x):
return self.module(x)
def get_loss(self, input, output):
loss = self.module.get_loss(input, output)
if self.delay_after_loss_ms > 0:
torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms()))
return loss
def run_backward(self, loss):
orig_reduce_scatter = torch.distributed._reduce_scatter_base
def _delayed_reduce_scatter(*args, **kwargs):
if self.delay_before_reduction_ms > 0:
torch.cuda._sleep(
int(self.delay_before_reduction_ms * get_cycles_per_ms())
)
return orig_reduce_scatter(*args, **kwargs)
with mock.patch(
"torch.distributed._reduce_scatter_base", _delayed_reduce_scatter
):
self.module.run_backward(loss)
class NestedWrappedModuleWithDelay(ModuleWithDelay):
def __init__(
self,
group,
wrap_fsdp,
fsdp_init_mode=FSDPInitMode.CUDA_AFTER,
cpu_offload=None,
backward_prefetch=None,
**kwargs
):
super().__init__(
NestedWrappedModule(
group,
wrap_fsdp,
fsdp_init_mode=fsdp_init_mode,
cpu_offload=cpu_offload,
backward_prefetch=backward_prefetch,
),
**kwargs
)
class DummyDDP(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
class MixtureOfExperts(NestedWrappedModule):
def __init__(self, group, wrap_fsdp, *args, delay_before_free_ms=0, fsdp_init_mode=FSDPInitMode.CUDA_BEFORE, **kwargs):
super().__init__(group, wrap_fsdp)
self.group = group
self.delay_before_free_ms = delay_before_free_ms
self.wrap_fsdp = wrap_fsdp
self.move_to_cuda = fsdp_init_mode == FSDPInitMode.CUDA_BEFORE
# "expert" params are different on each rank
torch.manual_seed(42 + group.rank())
d_expert = 23
d_shared = 12
d_input = 8
expert = _maybe_cuda(nn.Linear(d_expert, d_shared), self.move_to_cuda)
self.num_expert_params = sum([p.numel() for p in expert.parameters()])
for p in expert.parameters():
p.expert = True # type: ignore[attr-defined]
# everything else is shared
torch.manual_seed(0)
shared = _maybe_cuda(nn.Linear(d_shared, d_expert), self.move_to_cuda)
if wrap_fsdp:
# we create a process group of size 1 for the expert params
expert_group = torch.distributed.new_group(
[group.rank()]
) # world size 1 means no shard
expert = FullyShardedDataParallel(expert, expert_group, **kwargs) # type: ignore[assignment]
shared = FullyShardedDataParallel(shared, group, **kwargs) # type: ignore[assignment]
self.module = nn.Sequential(
_maybe_cuda(nn.Linear(d_input, d_shared), self.move_to_cuda),
shared,
expert,
_maybe_cuda(nn.Linear(d_shared, d_input), self.move_to_cuda)
)
def forward(self, x):
if self.delay_before_free_ms > 0:
expert = self.module[2]
if isinstance(expert, FullyShardedDataParallel):
orig_free_full_params = self.module[2]._free_full_params
def _free_full_params_with_delay(*args):
torch.cuda._sleep(
int(self.delay_before_free_ms * get_cycles_per_ms())
)
return orig_free_full_params(*args)
assert hasattr(
expert, "_free_full_params"
), "expert FSDP module should has _free_full_params attribute."
with mock.patch.object(
expert, "_free_full_params", _free_full_params_with_delay
):
return self.module(x)
return self.module(x)
def run_backward(self, loss):
loss.backward()
# manually reduce gradients if not wrapped in FullyShardedDataParallel
if not self.wrap_fsdp:
with torch.no_grad():
for p in self.parameters():
if hasattr(p, "expert"):
continue # these params don't need grad reduction
p.grad.div_(self.world_size)
torch.distributed.all_reduce(p.grad, group=self.group)
class FSDPTest(MultiProcessTestCase):
def setUp(self):
super(FSDPTest, self).setUp()
self._spawn_processes()
@property
def world_size(self):
return torch.cuda.device_count() if torch.cuda.is_available() else 4
@property
def init_method(self):
return "{}{file_name}".format(FILE_SCHEMA, file_name=self.file_name)
def _check_cpu_offload(self, fsdp_model, cpu_offload):
self.assertEqual(cpu_offload, fsdp_model.cpu_offload)
@classmethod
def _run(cls, rank, test_name, file_name, pipe):
self = cls(test_name)
self.rank = rank
self.file_name = file_name
print(f"dist init r={self.rank}, world={self.world_size}")
# Specify gloo backend to make 'init_process_group()' succeed,
# Actual tests will be skipped if there is no enough GPUs.
backend = os.environ.get("BACKEND", None)
if backend is None:
backend = "nccl" if torch.cuda.is_available() else "gloo"
try:
dist.init_process_group(
init_method=self.init_method,
backend=backend,
world_size=int(self.world_size),
rank=self.rank,
)
except RuntimeError as e:
if "recompile" in e.args[0]:
sys.exit(TEST_SKIPS["backend_unavailable"].exit_code)
raise
if torch.cuda.is_available() and torch.cuda.device_count():
torch.cuda.set_device(self.rank % torch.cuda.device_count())
# Execute barrier prior to running test to ensure that every process
# has finished initialization and that the following test
# immediately exiting due to a skip doesn't cause flakiness.
dist.barrier()
self.run_test(test_name, pipe)
dist.barrier()
dist.destroy_process_group()
sys.exit(0)
def _train_for_several_steps(self, model, num_steps, autocast, lr=0.01, fsdp_cpu_offload=None):
cpu_offload_params = fsdp_cpu_offload and fsdp_cpu_offload.offload_params
model_device = next(model.parameters()).device
# use SGD with momentum instead of Adam, since Adam is scale invariant
# and this makes it bad for tests
optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
for _ in range(num_steps):
optim.zero_grad()
with torch.cuda.amp.autocast(enabled=autocast):
# Inputs always cuda regardless of cpu offloading, or model.device
input = model.module.get_input(torch.device("cuda"))
output = model(*input)
# Post-forward, if CPU offloading model param should be on CPU.
if cpu_offload_params and isinstance(model, FullyShardedDataParallel):
for p in model.parameters():
# Params should always be on CPU, even if
# p._is_sharded=False
self.assertEqual(p.device, torch.device("cpu"))
loss = model.module.get_loss(input, output).to(model_device)
assert (
loss.dtype == torch.float32
), "loss data type should be float32, as the original \
parameter data type is float32."
model.module.run_backward(loss)
# Post-backward, if CPU offloading model params should be on CPU.
if cpu_offload_params and isinstance(model, FullyShardedDataParallel):
for p in model.parameters():
# Params should always be on CPU, even if
# p._is_sharded=False
self.assertEqual(p.device, torch.device("cpu"))
optim.step()
if isinstance(model, FullyShardedDataParallel):
model._assert_state(TrainingState_.IDLE)
return loss.detach()
def _test_identical_outputs(
self,
model_init_fn,
*args,
ref_ddp_fn=None,
num_steps=2,
fsdp_init_mode=FSDPInitMode.CUDA_AFTER,
lr=0.01,
cpu_offload=CPUOffload(),
backward_prefetch=None,
**kwargs
):
group = dist.distributed_c10d._get_default_group()
rank = group.rank()
# Establish reference behavior with PyTorch DDP (+ optionally autocast).
model = model_init_fn(group=group, wrap_fsdp=False).cuda()
if ref_ddp_fn is None:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[rank], output_device=rank
)
else:
model = ref_ddp_fn(model)
ref_loss = self._train_for_several_steps(
model, num_steps, autocast=False, lr=lr, fsdp_cpu_offload=cpu_offload
)
ref_full_params = list(model.parameters())
# Confirm we get the same behavior using FullyShardedDataParallel.
try:
model = model_init_fn(
group=group,
wrap_fsdp=True,
fsdp_init_mode=fsdp_init_mode,
cpu_offload=cpu_offload,
backward_prefetch=backward_prefetch
)
except Exception as e:
raise ValueError(f"model_Init_fn {model_init_fn} got error {str(e)}")
cpu_offload = cpu_offload or CPUOffload() # disabled if not specified.
model = FullyShardedDataParallel(model, cpu_offload=cpu_offload, backward_prefetch=backward_prefetch)
# Call model.cuda() after init FSDP if specified.
if fsdp_init_mode == FSDPInitMode.CUDA_AFTER:
model = model.cuda()
# Note that we don't do this check for FSDPInitMode.CUDA_AFTER since we
# expect FSDP code to raise error that we check below, in the case of
# offload params.
if fsdp_init_mode != FSDPInitMode.CUDA_AFTER and cpu_offload.offload_params:
for p in model.parameters():
# Should be on CPU regardless of if param is sharded.
self.assertEqual(p.device, torch.device("cpu"), f"Mismatch, cpu offload is {cpu_offload}")
only_check_err = fsdp_init_mode == FSDPInitMode.CUDA_AFTER and cpu_offload.offload_params
ctx = (
self.assertRaisesRegex(AssertionError, "Expected param to be on CPU")
if only_check_err else suppress()
)
with ctx:
shard_loss = self._train_for_several_steps(
model, num_steps, autocast=False, lr=lr,
fsdp_cpu_offload=cpu_offload,
)
# We only check for errors in the case we have the following setup:
# model = FSDP(model, cpu_offload=True)
# model = model.cuda()
# so skip the rest of this logic.
if only_check_err:
return
# If CPU offload, next call will change model params to GPU. Sanity
# check that params are on CPU before.
if cpu_offload.offload_params:
device_set = {p.device for p in model.parameters()}
self.assertEqual(
{torch.device("cpu")},
device_set,
f"Got device set {device_set}"
)
get_full_params(model)
shard_full_params = list(model.parameters())
if cpu_offload.offload_params:
shard_loss = shard_loss.cuda()
torch.testing.assert_allclose(ref_loss, shard_loss)
self.assertEqual(
ref_full_params,
shard_full_params,
exact_device=True,
msg="FullyShardedDataParallel didn't match PyTorch DDP",
)
def _get_wrapped_model(
self, group, cuda_first=False, **model_kwargs
) -> FullyShardedDataParallel:
if cuda_first:
model = FullyShardedDataParallel(
TransformerWithSharedParams(group, **model_kwargs).cuda(), group
)
else:
model = FullyShardedDataParallel(
TransformerWithSharedParams(group, **model_kwargs), group
).cuda()
return model