pytorch/caffe2/python/normalizer_context.py
Brian Wignall e7fe64f6a6 Fix typos (#30606)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30606

Differential Revision: D18763028

Pulled By: mrshenli

fbshipit-source-id: 896515a2156d062653408852e6c04b429fc5955c
2019-12-02 20:17:42 -08:00

39 lines
1.1 KiB
Python

# @package regularizer_context
# Module caffe2.python.normalizer_context
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import context
from caffe2.python.modifier_context import (
ModifierContext, UseModifierBase)
@context.define_context(allow_default=True)
class NormalizerContext(ModifierContext):
"""
provide context to allow param_info to have different normalizers
"""
def has_normalizer(self, name):
return self._has_modifier(name)
def get_normalizer(self, name):
assert self.has_normalizer(name), (
"{} normalizer is not provided!".format(name))
return self._get_modifier(name)
class UseNormalizer(UseModifierBase):
'''
context class to allow setting the current context.
Example usage with layer:
normalizers = {'norm1': norm1, 'norm2': norm2}
with UseNormalizer(normalizers):
norm = NormalizerContext.current().get_normalizer('norm1')
layer(norm=norm)
'''
def _context_class(self):
return NormalizerContext