pytorch/torch/testing/_internal/common_quantization.py
Jerry Zhang b0ec336477 [quant][graphmode][fx][test] Add per op test for graph mode quant on fx (#43229)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43229

Test Plan: Imported from OSS

Reviewed By: supriyar

Differential Revision: D23201692

fbshipit-source-id: 37fa54dcf0a9d5029f1101e11bfd4ca45b422641
2020-08-20 17:32:02 -07:00

1097 lines
40 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import copy
import io
import functools
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
from torch.testing._internal.common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit
from torch.quantization.default_mappings import (
DEFAULT_DYNAMIC_MODULE_MAPPING,
DEFAULT_QCONFIG_PROPAGATE_WHITE_LIST,
DEFAULT_QAT_MODULE_MAPPING,
)
# symbolic trace
from torch.fx import symbolic_trace
# graph mode quantization based on fx
from torch.quantization._quantize_fx import (
Quantizer,
QuantType,
fuse,
)
import unittest
from torch.testing import FileCheck
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for inp in calib_data:
output = model(*inp)
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for i in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
def convert_dynamic(module):
convert(module, DEFAULT_DYNAMIC_MODULE_MAPPING, inplace=True)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig_(model, qconfig_dict)
def _make_conv_test_input(
batch_size, in_channels_per_group, input_feature_map_size,
out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
W_zero_point, use_bias, use_channelwise,
):
in_channels = in_channels_per_group * groups
out_channels = out_channels_per_group * groups
(X_value_min, X_value_max) = (0, 4)
X_init = torch.randint(
X_value_min, X_value_max,
(batch_size, in_channels,) + input_feature_map_size)
X = X_scale * (X_init - X_zero_point).float()
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
W_scale = W_scale * out_channels
W_zero_point = W_zero_point * out_channels
# Resize W_scale and W_zero_points arrays equal to out_channels
W_scale = W_scale[:out_channels]
W_zero_point = W_zero_point[:out_channels]
# For testing, we use small values for weights and for activations so that
# no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
# qconv implementation and if there is no overflow.
# In reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
(W_value_min, W_value_max) = (-5, 5)
# The operator expects them in the format
# (out_channels, in_channels/groups,) + kernel_size
W_init = torch.randint(
W_value_min, W_value_max,
(out_channels, in_channels_per_group,) + kernel_size)
b_init = torch.randint(0, 10, (out_channels,))
if use_channelwise:
W_shape = (-1, 1) + (1,) * len(kernel_size)
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(*W_shape) * (
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
b = X_scale * W_scales_tensor * b_init.float()
W_q = torch.quantize_per_channel(
W, W_scales_tensor, W_zero_points_tensor.long(), 0,
dtype=torch.qint8)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).float()
b = X_scale * W_scale[0] * b_init.float()
W_q = torch.quantize_per_tensor(
W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
return (X, X_q, W, W_q, b if use_bias else None)
def skipIfNoFBGEMM(fn):
reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
if isinstance(fn, type):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
def get_script_module(model, tracing, data):
return torch.jit.trace(model, data) if tracing else torch.jit.script(model)
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
super().setUp()
self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
for _ in range(2)]
self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_dict = {1 : self.img_data_1d,
2 : self.img_data_2d,
3 : self.img_data_3d}
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkNoQconfig(self, module):
r"""Checks the module does not contain qconfig
"""
self.assertFalse(hasattr(module, 'qconfig'))
for child in module.children():
self.checkNoQconfig(child)
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module, propagate_qconfig_list=None):
r"""Checks the module or module's leaf descendants
have observers in preperation for quantization
"""
if propagate_qconfig_list is None:
propagate_qconfig_list = DEFAULT_QCONFIG_PROPAGATE_WHITE_LIST
if hasattr(module, 'qconfig') and module.qconfig is not None and \
len(module._modules) == 0 and not isinstance(module, torch.nn.Sequential) \
and type(module) in propagate_qconfig_list:
self.assertTrue(hasattr(module, 'activation_post_process'),
'module: ' + str(type(module)) + ' do not have observer')
# we don't need to check observers for child modules of the
# qat modules
if type(module) not in DEFAULT_QAT_MODULE_MAPPING.values():
for child in module.children():
self.checkObservers(child)
def checkQuantDequant(self, mod):
r"""Checks that mod has nn.Quantize and
nn.DeQuantize submodules inserted
"""
self.assertEqual(type(mod.quant), nnq.Quantize)
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
def checkWrappedQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnq.Linear
module, the bias is qint32, and that the module
has Quantize and DeQuantize submodules
"""
self.assertEqual(type(mod.module), nnq.Linear)
self.checkQuantDequant(mod)
def checkQuantizedLinear(self, mod):
self.assertEqual(type(mod), nnq.Linear)
def checkDynamicQuantizedLinear(self, mod, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nnqd.Linear)
self.assertEqual(mod._packed_params.dtype, dtype)
def check_eager_serialization(self, ref_model, loaded_model, x):
# Check state dict serialization and torch.save APIs
model_dict = ref_model.state_dict()
b = io.BytesIO()
torch.save(model_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
loaded_model.load_state_dict(loaded_dict)
ref_out = ref_model(x)
load_out = loaded_model(x)
def check_outputs(ref_out, load_out):
self.assertEqual(ref_out[0], load_out[0])
if isinstance(ref_out[1], tuple):
self.assertEqual(ref_out[1][0], load_out[1][0])
self.assertEqual(ref_out[1][1], load_out[1][1])
else:
self.assertEqual(ref_out[1], load_out[1])
check_outputs(ref_out, load_out)
b = io.BytesIO()
torch.save(ref_model, b)
b.seek(0)
loaded = torch.load(b)
load_out = loaded(x)
check_outputs(ref_out, load_out)
def check_weight_bias_api(self, ref_model, weight_keys, bias_keys):
weight = ref_model.get_weight()
bias = ref_model.get_bias()
self.assertEqual(weight_keys ^ weight.keys(), set())
self.assertEqual(bias_keys ^ bias.keys(), set())
def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.LSTM type
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkLinear(self, mod):
self.assertEqual(type(mod), torch.nn.Linear)
def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
self.assertEqual(type(mod), reference_module_type)
if hasattr(mod, '_all_weight_values'):
for packed_params in mod._all_weight_values:
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
scripted = torch.jit.script(orig_mod)
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
# Use first calib_data entry as trace input
traced = torch.jit.trace(orig_mod, calib_data[0][0])
self._checkScriptable(orig_mod, traced, calib_data, check_save_load)
# Call this twice: once for a scripted module and once for a traced module
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
# Test save/load
buffer = io.BytesIO()
torch.jit.save(script_mod, buffer)
buffer.seek(0)
loaded_mod = torch.jit.load(buffer)
# Pending __get_state_ and __set_state__ support
# See tracking task https://github.com/pytorch/pytorch/issues/23984
if check_save_load:
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
for inp in calib_data:
ref_output = orig_mod(*inp)
scripted_output = test_mod(*inp)
self.assertEqual(scripted_output, ref_output)
def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False,
check=True, eval_mode=True, dynamic=False, qconfig=None):
if debug:
print('Testing:', str(module))
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
if eval_mode:
module = module.eval()
if dynamic:
qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig}
model = get_script_module(module, tracing, inputs[0]).eval()
if debug:
print('input graph:', model.graph)
models = {}
outputs = {}
for d in [True, False]:
if dynamic:
models[d] = quantize_dynamic_jit(model, qconfig_dict, debug=d)
# make sure it runs
outputs[d] = models[d](inputs)
else:
# module under test can contain in-place ops, and we depend on
# input data staying constant for comparisons
inputs_copy = copy.deepcopy(inputs)
models[d] = quantize_jit(
model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False,
debug=d)
# make sure it runs
outputs[d] = models[d](*inputs[0])
if debug:
print('debug graph:', models[True].graph)
print('non debug graph:', models[False].graph)
if check:
# debug and non-debug option should have the same numerics
self.assertEqual(outputs[True], outputs[False])
# non debug graph should produce quantized op
FileCheck().check(quantized_op) \
.run(models[False].graph)
return models[False]
def checkGraphModuleHasNode(self, graph_module, target_node):
""" Check if GraphModule contains the target node
Args:
graph_module: the GraphModule instance we want to check
target_node: a tuple of 2 elements, first element is
the op type for GraphModule node, second element
is the target function for call_function and
type of the module for call_module,
only thse two types are supported currently
"""
assert target_node[0] in ['call_function', 'call_module'], 'Only call function' \
' and call module are supported right now'
modules = dict(graph_module.root.named_modules())
for node in graph_module.graph.nodes:
if node.op == 'call_function' and node.op == target_node[0] and node.target == target_node[1]:
return
elif node.op == 'call_module' and node.op == target_node[0] and type(modules[node.target]) == target_node[1]:
return
self.assertTrue(False, 'node:' + str(target_node) +
' not found in the graph module')
def printGraphModule(self, graph_module):
modules = dict(graph_module.root.named_modules())
for n in graph_module.graph.nodes:
node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs]))
if n.op == 'call_module':
node_info += ' module type:' + repr(type(modules[n.target]))
print(node_info)
def checkGraphModeFxOp(self, model, inputs, quantized_node, quant_type=QuantType.STATIC, debug=False):
""" Quantizes model with graph mode quantization on fx and check if the
quantized model contains the quantized_node
Args:
model: floating point torch.nn.Module
inputs: one positional sample input arguments for model
quantized_node: a tuple of 2 elements, first element is
the op type for GraphModule node, second element
is the target function for call_function and
type of the module for call_module
"""
if quant_type == QuantType.QAT:
model.train()
else:
model.eval()
original = symbolic_trace(model)
fused = fuse(original)
quantizer = Quantizer()
# TODO: uncommon after we make per channel observer work in the flow
# qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
qconfig_dict = {'' : default_qconfig}
if quant_type == QuantType.DYNAMIC:
prepared = quantizer.prepare_dynamic(fused, qconfig_dict)
else:
prepared = quantizer.prepare(fused, qconfig_dict)
prepared(*inputs)
qgraph = quantizer.convert(prepared)
qgraph_debug = quantizer.convert(prepared, debug=True)
result = qgraph(*inputs)
result_debug = qgraph_debug(*inputs)
self.assertEqual((result - result_debug).abs().max(), 0), \
'Expecting debug and non-debug option to produce identical result'
if debug:
print()
print('origianl graph module:', type(model))
self.printGraphModule(original)
print()
print('quantized graph module:', type(qgraph))
self.printGraphModule(qgraph)
print()
self.checkGraphModuleHasNode(qgraph, quantized_node)
# Below are a series of neural net models to use in testing quantization
# Single layer models
class SingleLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class AnnotatedSingleLayerLinearModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
class SingleLayerLinearDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class RNNDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRU':
self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float)
if mod_type == 'LSTM':
self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class RNNCellDynamicModel(torch.nn.Module):
def __init__(self, mod_type):
super().__init__()
self.qconfig = default_dynamic_qconfig
if mod_type == 'GRUCell':
self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float)
if mod_type == 'LSTMCell':
self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float)
if mod_type == 'RNNReLU':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float)
if mod_type == 'RNNTanh':
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float)
def forward(self, x):
x = self.mod(x)
return x
class LSTMwithHiddenDynamicModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float)
def forward(self, x, hid):
x, hid = self.lstm(x, hid)
return x, hid
class ConvModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
return x
class AnnotatedConvModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.dequant(x)
return x
class ConvBnModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class AnnotatedConvBnModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = default_qconfig
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.dequant(x)
return x
class AnnotatedConvBnReLUModel(torch.nn.Module):
def __init__(self, qengine='fbgemm'):
super(AnnotatedConvBnReLUModel, self).__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=True)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.dequant(x)
return x
def fuse_model(self):
torch.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True)
class TwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
self.fc2.qconfig = torch.quantization.get_default_qconfig("fbgemm")
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class ActivationsTestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig("fbgemm")
self.quant = torch.quantization.QuantStub()
self.hardswish = torch.nn.Hardswish().to(dtype=torch.float)
self.elu = torch.nn.ELU().to(dtype=torch.float)
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.hardswish(x)
x = self.elu(x)
x = self.dequant(x)
return x
class LinearReluModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
class NormalizationTestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = torch.quantization.QuantStub()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.layer_norm = torch.nn.LayerNorm((8))
self.group_norm = torch.nn.GroupNorm(2, 8)
self.instance_norm1d = torch.nn.InstanceNorm1d(8)
self.instance_norm2d = torch.nn.InstanceNorm2d(8)
self.instance_norm3d = torch.nn.InstanceNorm3d(8)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.layer_norm(x)
x = self.group_norm(x.unsqueeze(-1))
x = self.instance_norm1d(x)
x = self.instance_norm2d(x.unsqueeze(-1))
x = self.instance_norm3d(x.unsqueeze(-1))
return x
class NestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedNestedModel(torch.nn.Module):
def __init__(self, qengine):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
if qengine == 'fbgemm':
self.sub2.fc1.qconfig = default_per_channel_qconfig
else:
self.sub2.fc1.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedSubNestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
custom_options = {
'dtype': torch.quint8,
'qscheme': torch.per_tensor_affine
}
custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options),
weight=default_weight_observer)
self.sub2.fc1.qconfig = custom_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class QuantSubModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.sub2.qconfig = default_qconfig
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.fc3.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class InnerModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu1 = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
self.relu2 = torch.nn.ReLU()
def forward(self, x):
return self.relu2(self.fc2(self.relu1(self.fc1(x))))
def fuse_modules(self):
fusable_layers = []
named_children = list(self.named_children())
for idx, (current_name, layer) in enumerate(named_children):
if isinstance(layer, torch.nn.Linear):
if idx >= len(named_children) - 1:
break
if isinstance(named_children[idx + 1][1], torch.nn.ReLU):
fusable_layers.append([current_name,
named_children[idx + 1][0]])
torch.quantization.fuse_modules(self, fusable_layers, inplace=True)
class SkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self):
super().__init__()
self.sub = InnerModule()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.fuse_modules()
class AnnotatedSkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig(qengine)
self.sub = QuantWrapper(InnerModule())
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
# don't quantize this fc
self.fc.qconfig = None
def forward(self, x):
return self.fc(self.sub(x))
def fuse_modules(self):
self.sub.module.fuse_modules()
class QuantStubModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc(x)
return self.dequant(x)
class ManualLinearQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self, qengine):
super().__init__()
self.qconfig = torch.quantization.get_default_qat_qconfig(qengine)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualConvLinearQATModel(torch.nn.Module):
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
and contains both linear and conv modules
"""
def __init__(self):
super().__init__()
self.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack")
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = x.view(-1, 64).contiguous()
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class SubModelForFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class SubModelWithoutFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.conv(x))
class ModelForFusion(nn.Module):
def __init__(self, qconfig):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.sub1 = SubModelForFusion()
self.sub2 = SubModelWithoutFusion()
self.fc = nn.Linear(36, 10).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.qconfig = qconfig
self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float)
self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float)
self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float)
self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float)
self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float)
self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float)
# don't quantize sub2
self.sub2.qconfig = None
self.fc.qconfig = None
def forward(self, x):
x = x.squeeze(2)
x = self.quant(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu4(x)
x = x.unsqueeze(2)
y = x.unsqueeze(2)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.sub1(x)
x = self.dequant(x)
x = self.sub2(x)
x = x.view(-1, 36).contiguous()
x = self.fc(x)
y = self.conv2(y)
y = self.relu2(y)
y = self.bn2(y)
y = self.relu3(y)
y = self.dequant(y)
return x
class ConvBNReLU(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=False)
)
class ModelWithSequentialFusion(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1)
self.relu1 = nn.ReLU(inplace=False)
layers = []
for i in range(3):
layers.append(ConvBNReLU())
self.features = nn.Sequential(*layers)
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
self.classifier = nn.Sequential(*head)
self.seq = nn.Sequential()
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.relu1(x)
x = self.features(x)
x = torch.reshape(x, (-1, 3 * 10 * 10))
x = self.classifier(x)
x = self.seq(x)
x = self.dequant(x)
return x
class ModelForFusionWithBias(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float)
self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.dequant(x)
return x
class DummyObserver(torch.nn.Module):
def calculate_qparams(self):
return 1.0, 0
def forward(self, x):
return x
class ModelWithFunctionals(torch.nn.Module):
def __init__(self):
super().__init__()
self.mycat = nnq.FloatFunctional()
self.myadd = nnq.FloatFunctional()
self.myadd_relu = nnq.FloatFunctional()
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# self.my_scalar_add = nnq.FloatFunctional()
# self.my_scalar_mul = nnq.FloatFunctional()
def forward(self, x):
y = self.mycat.cat([x, x, x])
z = self.myadd.add(y, y)
w = self.myadd_relu.add_relu(z, z)
# Tracing doesnt work yet for c10 ops with scalar inputs
# https://github.com/pytorch/pytorch/issues/27097
# w = self.my_scalar_add.add_scalar(w, -0.5)
# w = self.my_scalar_mul.mul_scalar(w, 0.5)
return w
class ResNetBase(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.myop = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.myop.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
return out
class ModelMultipleOps(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.skip_add.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.view(-1, 3 * 2 * 2)
out = self.fc(out)
return out
# Model to ensure consistency of fake quant with true quant
# Average pooling and mean operations are not modelled
# accurately with fake-quant so this model does not
# contain those operations
class ModelMultipleOpsNoAvgPool(torch.nn.Module):
def __init__(self):
super().__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.skip_add = nn.quantized.FloatFunctional()
self.cat = nn.quantized.FloatFunctional()
self.maxpool = nn.MaxPool2d((4, 4))
self.fc = nn.Linear(12, 6)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
skip = self.conv2(x)
out = self.skip_add.add(out, skip)
out = self.relu2(out)
out = self.maxpool(out)
out = self.conv2(out)
out = torch.nn.functional.max_pool2d(out, 2, 2)
out = self.cat.cat([out, out])
out = out.view(-1, 3 * 2 * 2)
out = self.fc(out)
return out