pytorch/torch/csrc/jit/python/pybind_utils.cpp
Edward Z. Yang b04dca1502 Add pending_fresh_unbacked_symbols, populate unbacked_bindings for Dynamo (#124290)
The important comment:

```
        # Whenever we allocate a fresh unbacked Symbol, we add it to this
        # pending list.  Unbacked symbol allocation can occur at unpredictable
        # points during meta tensor propagation, but at some point, the we
        # have to know what the binding site for an unbacked symbol is, and
        # this is computed when we actually place the node in the graph.  The
        # important thing is that we always actually handle every unaccounted
        # for unbacked symbol, so this list helps us keep track of them and
        # then make sure they are all accounted for.
        #
        # We could potentially give rise to errors earlier by lexically
        # scoping when we do propagation, and only allowing unbacked symbols
        # to be allocated at this point in time.  However this is inconvenient
        # to do in Dynamo, because fake tensor propagation is far from when we
        # analyze binding sites (set_example_value), so we do it in a more
        # mutatey way.
        #
        # NB: fresh unbacked symbols NEVER get substitutions applied to them,
        # they are binding sites!
```

The compute_unbacked_bindings is the other half of the equation: the thing that actually consumes the pending_fresh_unbacked_symbols and does something with them. Important comment:

```
    After having run fake tensor propagation and producing example_value
    result, traverse example_value looking for freshly bound unbacked
    symbols and record their paths for later.  It is an error if
    we have allocated an unbacked SymInt but it cannot be found in
    example_value.  (NB: this means if you have a multi-output
    function, you must call this on the tuple of tensor output, you
    cannot wait!)
```

For example, if I return a tensor with size `[u0, u1]`, and u1 is a fresh unbacked SymInt, then I'll have `{u1: KeyPath(".size(1)")}`, telling me I can get u1 by running `size(1)` on the result of this node. u0 is not fresh (it probably flowed in as an argument), so I don't generate a binding for it.

I eventually intend to propagate this information all the way to Inductor lowering, where extra metadata about unbacked symbol binding will be canonically used for codegen, instead of trying to infer it from defs/uses.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124290
Approved by: https://github.com/lezcano
2024-04-24 09:11:34 +00:00

897 lines
32 KiB
C++

#include <torch/csrc/jit/ir/graph_utils.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_dict.h>
#include <torch/csrc/jit/python/python_ivalue.h>
#include <torch/csrc/jit/python/python_list.h>
#include <torch/csrc/jit/python/utf8_decoding_ignore.h>
#include <ATen/ScalarOps.h>
#include <c10/core/QScheme.h>
#include <c10/util/irange.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <limits>
namespace torch::jit {
static thread_local bool allow_numbers_as_tensors = false;
ToIValueAllowNumbersAsTensors::ToIValueAllowNumbersAsTensors(bool enable)
: old_(allow_numbers_as_tensors) {
allow_numbers_as_tensors = enable;
}
ToIValueAllowNumbersAsTensors::~ToIValueAllowNumbersAsTensors() {
allow_numbers_as_tensors = old_;
}
// This is a hack to remove instances deleted in C++ from the PyBind cache
// C++->Python. We need this because otherwise we may get the old Python object
// if C++ creates a new object at the memory location of the deleted object.
void clear_registered_instances(void* ptr) {
auto& registered_instances =
pybind11::detail::get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
auto vh = it->second->get_value_and_holder();
vh.set_instance_registered(false);
}
registered_instances.erase(ptr);
}
// WARNING: Precondition for this function is that, e.g., you have tested if a
// SymIntList is in fact only ints, and if so, you called this with T=int64_t.
// This precondition is NOT checked at runtime.
template <typename T>
IValue listToIValue(py::handle obj) {
c10::List<T> rs;
for (auto it = obj.begin(); it != obj.end(); it++) {
auto elm = *it;
rs.push_back(py::cast<T>(elm));
}
// Promises that we have decayed the list appropriately
return c10::impl::toList<T>(rs);
}
IValue toIValue(py::handle obj, const TypePtr& type, c10::optional<int32_t> N) {
switch (type->kind()) {
case TypeKind::TensorType: {
if (obj.ptr() == Py_None) {
// None gets converted to undefined Tensors
return autograd::Variable();
}
if (THPVariable_Check(obj.ptr())) {
auto var = py::cast<autograd::Variable>(obj);
guardAgainstNamedTensor<autograd::Variable>(var);
return var;
} else {
if (!allow_numbers_as_tensors) {
throw py::cast_error(
c10::str("Unable to cast ", py::str(obj), " to Tensor"));
}
bool save_symint = false;
at::Scalar scalar;
if (PyBool_Check(obj.ptr())) {
scalar = at::Scalar(THPUtils_unpackBool(obj.ptr()));
} else if (THPUtils_checkLong(obj.ptr())) {
scalar = at::Scalar(THPUtils_unpackLong(obj.ptr()));
} else if (PyComplex_Check(obj.ptr())) {
scalar = at::Scalar(THPUtils_unpackComplexDouble(obj.ptr()));
} else if (THPUtils_checkDouble(obj.ptr())) {
scalar = at::Scalar(THPUtils_unpackDouble(obj.ptr()));
} else if (torch::is_symint(py::handle(obj))) {
save_symint = true;
scalar = at::Scalar(7777777);
} else if (torch::is_symfloat(py::handle(obj))) {
save_symint = true;
scalar = at::Scalar(std::numeric_limits<double>::quiet_NaN());
} else if (torch::is_symbool(py::handle(obj))) {
save_symint = true;
scalar = at::Scalar(true);
} else {
throw py::cast_error(
c10::str("Unable to cast ", py::str(obj), " to Tensor"));
}
at::Tensor tensor = at::scalar_to_tensor(scalar);
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
if (save_symint) {
auto py_tensor = py::cast(tensor);
if (PyObject_SetAttrString(
py_tensor.ptr(), "_wrapped_number", obj.ptr()) < 0) {
throw python_error();
}
}
return tensor;
}
}
case TypeKind::StorageType:
return py::cast<at::Storage>(obj);
case TypeKind::FloatType:
if (torch::is_symfloat(py::handle(obj))) {
return py::cast<c10::SymFloat>(obj).guard_float(__FILE__, __LINE__);
}
if (THPVariable_Check(obj.ptr())) {
auto var = py::cast<autograd::Variable>(obj);
// NB: We carefully test if the storage is meta, because that is
// always accurate even if you have a fake tensor (which is the
// primary case we are trying to detect here)
if (var.storage().device_type() == c10::kMeta) {
throw py::cast_error(
"cannot extract float from tensor with meta storage");
}
}
return py::cast<double>(obj);
case TypeKind::ComplexType: {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return static_cast<c10::complex<double>>(c_obj);
}
case TypeKind::IntType:
// TODO: Properly fake this type
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
// For backwards compatibility
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
if (THPMemoryFormat_Check(obj.ptr())) {
auto memory_format = reinterpret_cast<THPMemoryFormat*>(obj.ptr());
return static_cast<int8_t>(memory_format->memory_format);
}
if (torch::is_symint(py::handle(obj))) {
return py::cast<c10::SymInt>(obj).guard_int(__FILE__, __LINE__);
}
if (THPVariable_Check(obj.ptr())) {
auto var = py::cast<autograd::Variable>(obj);
if (var.storage().device_type() == c10::kMeta) {
throw py::cast_error(
"cannot extract int from tensor with meta storage");
}
}
return py::cast<int64_t>(obj);
case TypeKind::LayoutType: {
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
// For backwards compatibility
return py::cast<int64_t>(obj);
}
case TypeKind::ScalarTypeType: {
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
// For backwards compatibility
return py::cast<int64_t>(obj);
}
case TypeKind::MemoryFormatType: {
if (THPMemoryFormat_Check(obj.ptr())) {
auto memory_format = reinterpret_cast<THPMemoryFormat*>(obj.ptr());
return static_cast<int8_t>(memory_format->memory_format);
}
// For backwards compatibility
return py::cast<int64_t>(obj);
}
case TypeKind::SymIntType:
if (torch::is_symint(obj.ptr())) {
return py::cast<c10::SymInt>(obj);
}
return py::cast<int64_t>(obj);
case TypeKind::SymFloatType:
if (torch::is_symfloat(obj.ptr())) {
return py::cast<c10::SymFloat>(obj);
}
return py::cast<double>(obj);
case TypeKind::SymBoolType:
if (torch::is_symbool(obj.ptr())) {
return py::cast<c10::SymBool>(obj);
}
return py::cast<bool>(obj);
case TypeKind::NoneType:
if (!obj.is_none()) {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to None"));
}
return {};
case TypeKind::BoolType:
if (torch::is_symbool(obj.ptr())) {
return py::cast<c10::SymBool>(obj).guard_bool(__FILE__, __LINE__);
}
if (THPVariable_Check(obj.ptr())) {
auto var = py::cast<autograd::Variable>(obj);
if (var.storage().device_type() == c10::kMeta) {
throw py::cast_error(
"cannot extract bool from tensor with meta storage");
}
}
return py::cast<bool>(obj);
case TypeKind::TupleType: {
py::tuple tuple = py::cast<py::tuple>(obj);
size_t tuple_size = tuple.size();
auto tuple_type = type->cast<TupleType>();
const auto& elem_types = tuple_type->elements();
if (elem_types.size() != tuple_size) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" had a different number of elements than type ",
type->repr_str()));
}
std::vector<IValue> values;
values.reserve(tuple_size);
for (const auto i : c10::irange(tuple_size)) {
values.push_back(toIValue(tuple[i], elem_types[i]));
}
return tuple_type->name()
? c10::ivalue::Tuple::createNamed(std::move(values), tuple_type)
: c10::ivalue::Tuple::create(std::move(values));
}
case TypeKind::UnionType: {
auto actual_type = toTypeInferredIValue(obj);
auto actual_type_ptr = actual_type.type();
auto union_type = type->expect<UnionType>();
if (!actual_type_ptr->isSubtypeOf(union_type)) {
throw py::cast_error(c10::str(
"Expected a member of ",
union_type->annotation_str(),
" but instead found type ",
actual_type.type()->annotation_str()));
}
return actual_type;
}
case TypeKind::StringType:
return ConstantString::create(py::cast<std::string>(obj));
case TypeKind::DeviceObjType: {
if (THPDevice_Check(obj.ptr())) {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return device->device;
}
return c10::Device(py::cast<std::string>(obj.ptr()));
}
case TypeKind::StreamObjType: {
auto thp_stream = reinterpret_cast<THPStream*>(obj.ptr());
auto stream = c10::Stream::unpack3(
thp_stream->stream_id,
thp_stream->device_index,
static_cast<c10::DeviceType>(thp_stream->device_type));
return stream;
}
case TypeKind::ListType: {
// If the object is a ScriptList, retrieve the c10::List
// instance inside it.
if (py::isinstance<ScriptList>(obj)) {
return py::cast<ScriptList>(obj).list_;
}
// If not (i.e. it is a regular Python list), make a new
// c10::List.
const auto& elem_type = type->expectRef<ListType>().getElementType();
switch (elem_type->kind()) {
// allows single int/float to be broadcasted to a fixed size list
case TypeKind::IntType:
if (!N || !py::isinstance<py::int_>(obj)) {
return IValue(py::cast<std::vector<int64_t>>(obj));
} else {
int64_t value = py::cast<int64_t>(obj);
c10::List<int64_t> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::SymIntType: {
bool is_symbolic = false;
for (auto it = obj.begin(); it != obj.end(); it++) {
auto elm = *it;
if (torch::is_symint(elm)) {
is_symbolic = true;
break;
}
}
if (is_symbolic) {
return listToIValue<c10::SymInt>(obj);
} else {
return listToIValue<int64_t>(obj);
}
}
case TypeKind::SymFloatType: {
bool is_symbolic = false;
for (auto it = obj.begin(); it != obj.end(); it++) {
auto elm = *it;
// TODO: what about SymInt conversion to SymFloat?
if (torch::is_symfloat(elm)) {
is_symbolic = true;
break;
}
}
if (is_symbolic) {
return listToIValue<c10::SymFloat>(obj);
} else {
return listToIValue<double>(obj);
}
}
case TypeKind::SymBoolType: {
bool is_symbolic = false;
for (auto it = obj.begin(); it != obj.end(); it++) {
auto elm = *it;
if (torch::is_symbool(elm)) {
is_symbolic = true;
break;
}
}
if (is_symbolic) {
return listToIValue<c10::SymBool>(obj);
} else {
return listToIValue<bool>(obj);
}
}
case TypeKind::FloatType:
if (!N || !py::isinstance<py::float_>(obj)) {
return IValue(py::cast<std::vector<double>>(obj));
} else {
double value = py::cast<double>(obj);
c10::List<double> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::BoolType:
return IValue(py::cast<std::vector<bool>>(obj));
case TypeKind::TensorType:
return IValue(py::cast<std::vector<at::Tensor>>(obj));
default:
return createGenericList(obj, elem_type);
}
}
case TypeKind::DictType: {
const auto& dict_type = type->expect<DictType>();
// If the object is a ScriptDict, retrieve the c10::Dict
// instance inside it.
try {
auto script_dict = py::cast<ScriptDict>(obj);
return script_dict.dict_;
} catch (py::cast_error& e) {
}
// If not (i.e. it is a regular Python dictionary), make a new
// c10::Dict.
return createGenericDict(
py::cast<py::dict>(obj),
dict_type->getKeyType(),
dict_type->getValueType());
}
case TypeKind::OptionalType: {
// check if it's a none obj since optional accepts NoneType
if (obj.is_none()) {
// check if it's a none obj since optional accepts NoneType
// return an IValue() to denote a NoneType
return {};
}
return toIValue(obj, type->expectRef<OptionalType>().getElementType(), N);
}
case TypeKind::ClassType: {
auto classType = type->expect<ClassType>();
auto object = py::cast<py::object>(obj);
if (auto mod = as_module(object)) {
// if obj is already a ScriptModule, just return its ivalue
return mod.value()._ivalue();
}
// Check if the obj is a ScriptObject.
if (auto script_obj = as_object(object)) {
return script_obj.value()._ivalue();
}
// otherwise is a normal class object, we create a fresh
// ivalue::Object to use from the py object.
// 1. create a bare ivalue
const size_t numAttrs = classType->numAttributes();
auto cu = classType->compilation_unit();
auto userObj = c10::ivalue::Object::create(
c10::StrongTypePtr(cu, classType), numAttrs);
// 2. copy all the contained types
for (const auto slot : c10::irange(numAttrs)) {
const auto& attrType = classType->getAttribute(slot);
const auto& attrName = classType->getAttributeName(slot);
if (!py::hasattr(obj, attrName.c_str())) {
throw py::cast_error(c10::str(
"Tried to cast object to type ",
type->repr_str(),
" but object",
" was missing attribute ",
attrName));
}
try {
const auto& contained = py::getattr(obj, attrName.c_str());
userObj->setSlot(slot, toIValue(contained, attrType));
} catch (std::exception& e) {
throw py::cast_error(c10::str(
"Could not cast attribute '",
attrName,
"' to type ",
attrType->repr_str(),
": ",
e.what()));
}
}
return userObj;
}
case TypeKind::InterfaceType: {
auto interfaceType = type->expect<InterfaceType>();
// When converting an pyobj to an interface, we check if rhs
// is module or normal torchscript class, get the type and ivalue
// from them correspondingly.
c10::ClassTypePtr classType = nullptr;
IValue res;
if (auto mod = as_module(py::cast<py::object>(obj))) {
classType = mod.value().type();
res = mod.value()._ivalue();
} else if (auto object = as_object(py::cast<py::object>(obj))) {
classType = object.value().type();
res = object.value()._ivalue();
} else {
// We inspect the value to found the compiled TorchScript class
// and then create a ivalue::Object from that class type.
py::str qualified_name = py::module::import("torch._jit_internal")
.attr("_qualified_name")(obj.get_type());
auto pyCu = get_python_cu();
classType = pyCu->get_class(c10::QualifiedName(qualified_name));
if (!classType) {
throw std::runtime_error(c10::str(
"Assigning the object ",
py::str(obj),
" to an interface fails because the value is not "
"a TorchScript compatible type, did you forget to",
"turn it into a user defined TorchScript class?"));
}
res = toIValue(obj, classType);
}
// check if the classType conform with the interface or not
std::stringstream why_not;
if (!classType->isSubtypeOfExt(*interfaceType, &why_not)) {
throw py::cast_error(c10::str(
"Object of type ",
classType->repr_str(),
" is not compatible with interface ",
interfaceType->repr_str(),
"\n",
why_not.str()));
}
return res;
}
case TypeKind::NumberType: {
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
if (py::isinstance<py::bool_>(obj)) {
return py::cast<bool>(obj);
} else if (py::isinstance<py::int_>(obj)) {
return py::cast<int64_t>(obj);
} else if (py::isinstance<py::float_>(obj)) {
return py::cast<double>(obj);
} else if (PyComplex_CheckExact(obj.ptr())) {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return static_cast<c10::complex<double>>(c_obj);
} else if (torch::is_symint(obj)) {
return py::cast<c10::SymInt>(obj);
} else if (torch::is_symfloat(obj)) {
return py::cast<c10::SymFloat>(obj);
} else if (torch::is_symbool(obj)) {
return py::cast<c10::SymBool>(obj);
} else {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to ", type->repr_str()));
}
}
case TypeKind::RRefType: {
#ifdef USE_RPC
return obj.cast<torch::distributed::rpc::PyRRef>().toIValue();
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} break;
case TypeKind::PyObjectType: {
return c10::ivalue::ConcretePyObjectHolder::create(obj);
}
case TypeKind::CapsuleType: {
return IValue::make_capsule(py::cast<c10::Capsule>(obj).obj_ptr);
}
case TypeKind::FutureType: {
return obj.cast<std::shared_ptr<PythonFutureWrapper>>()->fut;
}
case TypeKind::AwaitType: {
return obj.cast<std::shared_ptr<PythonAwaitWrapper>>()->aw_;
}
case TypeKind::AnyType:
return toTypeInferredIValue(obj);
case TypeKind::QSchemeType: {
if (py::isinstance<py::int_>(obj)) {
return static_cast<at::QScheme>(py::cast<int64_t>(obj));
}
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to ", type->repr_str()));
}
case TypeKind::GeneratorType:
return py::cast<at::Generator>(obj);
case TypeKind::DynamicType:
case TypeKind::FunctionType:
case TypeKind::QuantizerType:
case TypeKind::VarType:
case TypeKind::AnyListType:
case TypeKind::AnyTupleType:
case TypeKind::AnyClassType:
case TypeKind::AnyEnumType:
break;
case TypeKind::EnumType:
EnumTypePtr enum_type = type->expect<EnumType>();
py::object py_obj = py::reinterpret_borrow<py::object>(obj);
std::string name = py::cast<std::string>(obj.attr("name"));
IValue value = toIValue(obj.attr("value"), enum_type->getValueType(), {});
auto enum_holder =
c10::make_intrusive<c10::ivalue::EnumHolder>(enum_type, name, value);
return IValue(enum_holder);
}
throw py::cast_error(c10::str(
"toIValue() cannot handle converting to type: ", type->repr_str()));
}
py::object toPyObject(IValue ivalue) {
if (ivalue.isNone()) {
return py::none();
} else if (ivalue.isTensor()) {
auto tensor = std::move(ivalue).toTensor();
if (tensor.unsafeGetTensorImpl()->is_wrapped_number()) {
TORCH_INTERNAL_ASSERT(tensor.device().is_cpu());
auto py_tensor = py::cast(tensor);
if (PyObject_HasAttrString(py_tensor.ptr(), "_wrapped_number")) {
return py_tensor.attr("_wrapped_number");
}
auto scalar_type = tensor.scalar_type();
switch (scalar_type) {
case at::ScalarType::Bool:
return py::cast(*tensor.const_data_ptr<bool>());
case at::ScalarType::Long:
return py::cast(*tensor.const_data_ptr<int64_t>());
case at::ScalarType::Double:
return py::cast(*tensor.const_data_ptr<double>());
case at::ScalarType::ComplexDouble:
// TODO: https://github.com/pytorch/pytorch/issues/77134
return py::cast(static_cast<std::complex<double>>(
*tensor.const_data_ptr<c10::complex<double>>()));
default:
TORCH_CHECK(
false,
"Missing cases in 'toPyObject' wrapped number handling! Can't convert ",
scalar_type,
" to a Python object");
}
} else {
guardAgainstNamedTensor<at::Tensor>(tensor);
return py::cast(autograd::Variable(std::move(tensor)));
}
} else if (ivalue.isStorage()) {
return py::cast(std::move(ivalue).toStorage());
} else if (ivalue.isGenerator()) {
return py::cast(std::move(ivalue).toGenerator());
} else if (ivalue.isDouble()) {
return py::cast(std::move(ivalue).toDouble());
} else if (ivalue.isComplexDouble()) {
return py::cast(
static_cast<std::complex<double>>(std::move(ivalue).toComplexDouble()));
} else if (ivalue.isInt()) {
return py::cast(std::move(ivalue).toInt());
} else if (ivalue.isBool()) {
return py::cast(std::move(ivalue).toBool());
} else if (ivalue.isString()) {
if (getUTF8DecodingIgnore()) {
std::string s = std::move(ivalue).toStringRef();
PyObject* pyObj = PyUnicode_DecodeUTF8(s.data(), s.length(), "ignore");
return py::reinterpret_steal<py::object>(pyObj);
} else {
return py::cast(std::move(ivalue).toStringRef());
}
} else if (ivalue.isList()) {
auto list = std::move(ivalue).toList();
py::list t{list.size()};
for (const auto i : c10::irange(list.size())) {
t[i] = toPyObject(IValue{list.get(i)});
}
return std::move(t);
} else if (ivalue.isTuple()) {
auto tuple = std::move(ivalue).toTuple();
const auto& elements = tuple->elements();
py::tuple t{elements.size()};
for (const auto i : c10::irange(elements.size())) {
t[i] = toPyObject(IValue{elements.at(i)});
}
// If we have a NamedTuple
if (tuple->type() && tuple->type()->schema() &&
!tuple->type()->schema()->name().empty()) {
auto unqualName = tuple->type()->name()->name();
std::vector<Argument> tuple_args = tuple->type()->schema()->arguments();
std::vector<pybind11::object> defaults;
auto it = std::find_if(
tuple_args.begin(), tuple_args.end(), [](const Argument& arg) {
return arg.default_value().has_value();
});
std::transform(
it,
tuple_args.end(),
std::back_inserter(defaults),
[](const Argument& arg) { return toPyObject(*arg.default_value()); });
std::vector<std::string> fieldNames =
fmap(tuple_args, [](const Argument& arg) { return arg.name(); });
return py::module::import("torch._jit_internal")
.attr("_create_named_tuple")(
t, unqualName, fieldNames, py::make_tuple(defaults));
} else {
return std::move(t);
}
} else if (ivalue.isDevice()) {
return py::cast(std::move(ivalue).toDevice());
} else if (ivalue.isStream()) {
return py::cast(std::move(ivalue).toStream());
} else if (ivalue.isGenericDict()) {
auto dict = std::move(ivalue).toGenericDict();
py::dict py_dict;
for (auto& pair : dict) {
py_dict[toPyObject(IValue{pair.key()})] =
toPyObject(IValue{pair.value()});
}
return std::move(py_dict);
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
auto RRefPtr =
c10::dynamic_intrusive_pointer_cast<torch::distributed::rpc::RRef>(
std::move(ivalue).toRRef());
return py::cast(torch::distributed::rpc::PyRRef(RRefPtr));
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} else if (ivalue.isObject()) {
const auto obj = std::move(ivalue).toObject();
if (obj->type()->is_module()) {
return py::cast(Module(obj));
}
auto pyCu = get_python_cu();
if (obj->name().find("__torch__.torch.classes") == 0) {
return py::cast(Object(obj));
}
const auto classType = pyCu->get_class(c10::QualifiedName(obj->name()));
AT_ASSERT(classType);
auto pyClass = getScriptedClassOrError(obj->type());
auto pyObj = pyClass.attr("__new__")(pyClass);
const auto numAttrs = classType->numAttributes();
for (const auto slot : c10::irange(numAttrs)) {
const auto& attrName = classType->getAttributeName(slot);
IValue v = obj->getSlot(slot);
py::setattr(pyObj, attrName.c_str(), toPyObject(std::move(v)));
}
return pyObj;
} else if (ivalue.isPyObject()) {
// return borrowed reference to ensure it correctly incref the underlying
// PyObject
return py::reinterpret_borrow<py::object>(ivalue.toPyObject());
} else if (ivalue.isCapsule()) {
return py::cast(c10::Capsule(ivalue.toCapsule()));
} else if (ivalue.isFuture()) {
return py::cast(std::make_shared<PythonFutureWrapper>(ivalue.toFuture()));
} else if (ivalue.isAwait()) {
return py::cast(std::make_shared<PythonAwaitWrapper>(ivalue.toAwait()));
} else if (ivalue.isEnum()) {
auto enum_holder = ivalue.toEnumHolder();
auto py_class = getScriptedClassOrError(enum_holder->type());
return py_class.attr(enum_holder->name().c_str());
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
return py::cast(torch::distributed::rpc::PyRRef(
c10::static_intrusive_pointer_cast<distributed::rpc::RRef>(
ivalue.toRRef())));
#else
TORCH_CHECK(false, "RRef is only supported with the distributed package");
#endif
} else if (ivalue.isSymInt()) {
return py::cast(std::move(ivalue).toSymInt());
} else if (ivalue.isSymFloat()) {
return py::cast(std::move(ivalue).toSymFloat());
} else if (ivalue.isSymBool()) {
return py::cast(std::move(ivalue).toSymBool());
} else {
AT_ERROR(
"Missing cases in 'toPyObject'! Can't convert ",
ivalue.tagKind(),
" to a Python object");
}
}
std::pair<std::shared_ptr<Operator>, Stack> getOpWithStack(
const std::vector<std::shared_ptr<Operator>>& operations,
py::args args,
const py::kwargs& kwargs) {
Stack stack;
if (operations.size() == 1) {
std::shared_ptr<Operator> op = operations.at(0);
// Create a stack full of the arguments and keyword arguments.
stack = createStackForSchema(
op->schema(), std::move(args), kwargs, c10::nullopt);
return std::make_pair(std::move(op), std::move(stack));
} else {
std::vector<schema_match_error> errors;
std::shared_ptr<Operator> found_op = nullptr;
for (const auto& op : operations) {
try {
stack = createStackForSchema(op->schema(), args, kwargs, c10::nullopt);
found_op = op;
break;
} catch (schema_match_error& error) {
errors.push_back(std::move(error));
}
}
if (!found_op) {
std::stringstream ss;
ss << "Overloaded torch operator invoked from Python failed to match any schema:\n";
for (const auto& err : errors) {
ss << err.what() << "\n\n";
}
throw std::runtime_error(ss.str());
}
return std::make_pair(std::move(found_op), std::move(stack));
}
}
// This function is used to check if the schema is valid for the given args and
// kwargs. It checks script object by checking wether the FakeScriptObject is
// an instance of the corresponding fake class for the actual class used in
// schema.
bool checkSchemaAllowFakeScriptObject(
const FunctionSchema& schema,
py::args args,
const py::kwargs& kwargs) {
bool match = false;
try {
match = matchSchemaAllowFakeScriptObject(schema, std::move(args), kwargs);
} catch (schema_match_error& error) {
throw std::runtime_error(error.what());
}
return match;
}
py::object invokeOperatorFromPython(
const std::vector<std::shared_ptr<Operator>>& operations,
py::args args,
const py::kwargs& kwargs,
c10::optional<c10::DispatchKey> dk) {
auto [found_op, stack] = getOpWithStack(operations, args, kwargs);
{
pybind11::gil_scoped_release no_gil_guard;
if (dk) {
found_op->getOperationForDispatchKey (*dk)(stack);
} else {
found_op->getOperation()(stack);
}
}
return createPyObjectForStack(std::move(stack));
}
py::tuple _maybe_handle_torch_function(
const std::string& ns,
const std::string& method_name,
const std::string& overload_name,
bool is_overload,
py::args args,
const py::kwargs& kwargs) {
std::vector<PyObject*> overloaded_args;
size_t total_arg_num = args.size() + kwargs.size();
for (const auto i : c10::irange(args.size())) {
is_tensor_and_append_overloaded(args[i].ptr(), &overloaded_args);
is_tensor_list_and_append_overloaded(
args[i].ptr(),
&overloaded_args,
static_cast<int>(total_arg_num),
false /* throw_error */);
}
// NB: for kwargs, we cannot guarantee the order of appending
// is the same as the argument order in operator's schema.
// This is suboptimal, but should be fine. Later when we have
// better schema matching and argument parsing, we could
// match the operator in `operations` first, then the order will
// be guaranteed.
for (auto item : kwargs) {
is_tensor_and_append_overloaded(item.second.ptr(), &overloaded_args);
is_tensor_list_and_append_overloaded(
item.second.ptr(),
&overloaded_args,
total_arg_num,
false /* throw_error */);
}
if (!overloaded_args.empty() || at::impl::torch_function_mode_enabled()) {
auto self_func = py::module::import("torch")
.attr("ops")
.attr(ns.c_str())
.attr(method_name.c_str());
if (is_overload) {
if (overload_name.empty()) {
self_func = self_func.attr("default");
} else {
self_func = self_func.attr(overload_name.c_str());
}
}
std::string module_name("torch.ops");
module_name.append(ns);
return py::make_tuple(
true,
pybind11::reinterpret_steal<py::object>(
handle_torch_function_no_python_arg_parser(
overloaded_args,
args.ptr(),
kwargs.ptr(),
method_name.c_str(),
self_func.ptr(),
module_name.c_str())));
}
return py::make_tuple(false, py::none());
}
py::object _get_operation_for_overload_or_packet(
const std::vector<std::shared_ptr<Operator>>& operations,
Symbol symbol,
py::args args,
const py::kwargs& kwargs,
bool is_overload,
c10::optional<c10::DispatchKey> dk) {
std::string ns = symbol.ns().toUnqualString();
std::string method_name = symbol.toUnqualString();
std::string overload_name = operations[0]->schema().overload_name();
auto res = _maybe_handle_torch_function(
ns, method_name, overload_name, is_overload, args, kwargs);
auto torch_function_called = py::cast<bool>(res[0]);
return torch_function_called
? res[1]
: invokeOperatorFromPython(operations, args, kwargs, dk);
}
} // namespace torch::jit