pytorch/torch/csrc/autograd
Simon Fan 578160c875 [ca] don't inline accumulate grad op (#149014)
we use dummy tensors in our initial trace, so we should never inline. the subclass dispatch might not support the dummy tensor, e.g. DTensor accumulate grad will check that both param and grad are DTensors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149014
Approved by: https://github.com/jansel
ghstack dependencies: #149064
2025-03-15 01:10:54 +00:00
..
functions [ca] don't inline accumulate grad op (#149014) 2025-03-15 01:10:54 +00:00
utils [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
anomaly_mode.cpp
anomaly_mode.h
autograd_meta.cpp
autograd_not_implemented_fallback.cpp
autograd_not_implemented_fallback.h
autograd.cpp
autograd.h
cpp_hook.cpp
cpp_hook.h
custom_function.cpp functional compiled autograd (#144707) 2025-01-27 05:20:56 +00:00
custom_function.h [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
edge.h
engine.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
engine.h [ca] side-effect free initial trace: GraphTask (#147796) 2025-02-26 16:37:27 +00:00
forward_grad.cpp
forward_grad.h
function_hook.h [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
function.cpp
function.h [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
FunctionsManual.cpp Implement gradient for the residuals of torch.linalg.lstsq (#148526) 2025-03-10 12:35:09 +00:00
FunctionsManual.h Implement gradient for the residuals of torch.linalg.lstsq (#148526) 2025-03-10 12:35:09 +00:00
grad_mode.h
graph_task.h
InferenceMode.h
init.cpp [Profiler][HPU] Fix incorrect availabilities for HPU (#148663) 2025-03-13 08:03:52 +00:00
input_buffer.cpp
input_buffer.h
input_metadata.cpp
input_metadata.h
jit_decomp_interface.cpp
jit_decomp_interface.h
profiler_kineto.cpp Add overload names to profiler trace (#143114) 2025-03-05 01:00:29 +00:00
profiler_kineto.h Add overload names to profiler trace (#143114) 2025-03-05 01:00:29 +00:00
profiler_legacy.cpp
profiler_legacy.h
profiler_python.cpp
profiler_python.h
profiler.h
python_anomaly_mode.cpp
python_anomaly_mode.h
python_autograd.h
python_cpp_function.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_cpp_function.h
python_engine.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_engine.h
python_enum_tag.h
python_fft_functions.h
python_function.cpp [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
python_function.h [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
python_hook.cpp [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
python_hook.h [reland][ca] side-effect free inital trace: compiled_args (#148376) 2025-03-11 01:57:36 +00:00
python_legacy_variable.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_legacy_variable.h
python_linalg_functions.h
python_nested_functions_manual.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_nested_functions.h
python_nn_functions.h
python_saved_variable_hooks.cpp [ca] trace saved variable unpacking (#147242) 2025-02-26 16:37:17 +00:00
python_saved_variable_hooks.h [ca] trace saved variable unpacking (#147242) 2025-02-26 16:37:17 +00:00
python_sparse_functions.h
python_special_functions.h
python_torch_functions_manual.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_torch_functions.h Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_variable_indexing.cpp
python_variable_indexing.h
python_variable.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
python_variable.h
README.md
record_function_ops.cpp Enable misc-use-internal-linkage check and apply fixes (#148948) 2025-03-12 14:22:56 +00:00
record_function_ops.h
saved_variable_hooks.h [ca] trace saved variable unpacking (#147242) 2025-02-26 16:37:17 +00:00
saved_variable.cpp [ca] trace saved variable unpacking (#147242) 2025-02-26 16:37:17 +00:00
saved_variable.h [ca] trace saved variable unpacking (#147242) 2025-02-26 16:37:17 +00:00
symbolic.h
TraceTypeManual.cpp
variable_info.cpp
variable_info.h
variable.cpp
variable.h
VariableTypeManual.cpp
VariableTypeUtils.h

Autograd

Autograd is a hotspot for PyTorch performance, so most of the heavy lifting is implemented in C++. This implies that we have to do some shuffling between Python and C++; and in general, we want data to be in a form that is convenient to manipulate from C++.

Our general model is that for any key data type that autograd manipulates, there are two implementations: a C++ type and a Python object type. For example, consider variables in autograd: we have both Variable in variable.h (the C++ type) and THPVariable in python_variable.h (the Python type.) (By the way, THP stands for TorcH Python, not to be confused with THPP, TorcH C++). Variable contains the payload of a variable, while THPVariable just contains a shared_ptr reference to Variable, as well as references to other Python objects which the Python runtime needs to know about. A lot of data accessor implementations in python_variable.cpp simply reach through to the underlying Variable and return the appropriate value.

The most complicated application of this principle is Function, which also supports users implementing custom behavior in Python. We have the following classes:

  • Node in function.h, the C++ type.
  • THPFunction in python_function.h, the Python object type. In python_function.cpp, you can see the boilerplate that tells the Python interpreter about this object.
  • PyNode in python_function.h, a subclass of Node which forwards apply to a Python THPFunction. (NOT a Python object, despite its name!)

Outside of PyNode, the C++ objects largely avoid referencing Python objects (there are a few exceptions, like pyobj in Variable, and PyNode, whose whole point is to let C++ call into Python). And pyobj in Node to ensure uniqueness of the associated python wrapper (if it exists).