pytorch/test/cpp/rpc/test_tensorpipe_serialization.cpp
Lucas Hosseini af3fc9725d Extract rpc/tensorpipe_utils.{cpp,h} from rpc/utils.{cpp,h} (#44803)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44803

Test Plan: CI

Reviewed By: lw

Differential Revision: D23732022

fbshipit-source-id: 5b839c7997bbee162a14d03414ee32baabbc8ece
2020-09-18 13:51:43 -07:00

157 lines
6.3 KiB
C++

#include <gtest/gtest.h>
#include <tensorpipe/core/message.h>
#include <torch/csrc/distributed/rpc/tensorpipe_utils.h>
#include <torch/torch.h>
#include <memory>
#include <string>
#include <vector>
TEST(TensorpipeSerialize, Base) {
// Sender serializes
at::Tensor t1 = torch::ones({1024}, at::ScalarType::Int);
at::Tensor t2 = torch::ones({1024}, at::ScalarType::Float);
std::vector<at::Tensor> tensors{t1, t2};
std::vector<char> payload = {'1', '2', '3'};
std::vector<char> payloadCopy = payload; // for testing
torch::distributed::rpc::MessageType mtype =
torch::distributed::rpc::MessageType::UNKNOWN;
int64_t mId = 100;
torch::distributed::rpc::Message sendingRpcMessage(
std::move(payload), std::move(tensors), mtype);
sendingRpcMessage.setId(mId);
tensorpipe::Message sendingTpMessage;
torch::distributed::rpc::TensorpipeWriteBuffers sendingTpBuffers;
std::tie(sendingTpMessage, sendingTpBuffers) =
torch::distributed::rpc::tensorpipeSerialize(
std::move(sendingRpcMessage));
// Mimic receiving message descriptor: recvingTpMessage is a copy of
// sendingTpMessage except for the data pointers which are left null.
tensorpipe::Message recvingTpMessage;
recvingTpMessage.metadata = sendingTpMessage.metadata;
recvingTpMessage.payloads.reserve(sendingTpMessage.payloads.size());
for (auto& tpPayload : sendingTpMessage.payloads) {
tensorpipe::Message::Payload p;
p.length = tpPayload.length;
p.metadata = tpPayload.metadata;
recvingTpMessage.payloads.push_back(std::move(p));
}
EXPECT_EQ(recvingTpMessage.payloads.size(), sendingTpMessage.payloads.size());
recvingTpMessage.tensors.reserve(sendingTpMessage.tensors.size());
for (auto& tpTensor : sendingTpMessage.tensors) {
tensorpipe::Message::Tensor t;
t.length = tpTensor.length;
t.metadata = tpTensor.metadata;
recvingTpMessage.tensors.push_back(std::move(t));
}
EXPECT_EQ(recvingTpMessage.tensors.size(), sendingTpMessage.tensors.size());
// Mimic readDescriptor() callback:
// - Allocate buffers
// - Fill pointers in tensorpipe message
torch::distributed::rpc::TensorpipeReadBuffers recvingTpBuffers =
torch::distributed::rpc::tensorpipeAllocate(recvingTpMessage);
// Mimic tensorpipe data transfer
for (int i = 0; i < recvingTpMessage.payloads.size(); i++) {
tensorpipe::Message::Payload& srcPayload = sendingTpMessage.payloads[i];
tensorpipe::Message::Payload& dstPayload = recvingTpMessage.payloads[i];
if (srcPayload.length) {
// Empty vector's data() can return nullptr, use the length to avoid
// coying into nullptr
memcpy(dstPayload.data, srcPayload.data, srcPayload.length);
}
}
for (int i = 0; i < recvingTpMessage.tensors.size(); i++) {
tensorpipe::Message::Tensor& srcTensor = sendingTpMessage.tensors[i];
tensorpipe::Message::Tensor& dstTensor = recvingTpMessage.tensors[i];
memcpy(dstTensor.data, srcTensor.data, srcTensor.length);
}
// Mimic read() callback:
// - Unpickle
torch::distributed::rpc::Message recvingRpcMessage =
torch::distributed::rpc::tensorpipeDeserialize(
std::move(recvingTpMessage), std::move(recvingTpBuffers));
// Data is ready
EXPECT_EQ(mtype, recvingRpcMessage.type());
EXPECT_EQ(payloadCopy, recvingRpcMessage.payload());
EXPECT_EQ(mId, recvingRpcMessage.id());
EXPECT_TRUE(torch::equal(t1, recvingRpcMessage.tensors()[0]));
EXPECT_TRUE(torch::equal(t2, recvingRpcMessage.tensors()[1]));
}
TEST(TensorpipeSerialize, RecopySparseTensors) {
// Take a 1K row of a 1M tensors, and make sure we don't send across 1M rows.
constexpr size_t k1K = 1024;
at::Tensor main = torch::randn({k1K, k1K});
at::Tensor tiny = main.select(0, 2); // Select a row in the middle
EXPECT_EQ(tiny.numel(), k1K);
EXPECT_EQ(tiny.storage().nbytes() / tiny.itemsize(), k1K * k1K);
std::vector<at::Tensor> tensors{main, tiny};
std::vector<char> payload = {'1', '2', '3'};
torch::distributed::rpc::MessageType mtype =
torch::distributed::rpc::MessageType::UNKNOWN;
torch::distributed::rpc::Message sendingRpcMessage(
std::move(payload), std::move(tensors), mtype);
tensorpipe::Message sendingTpMessage;
torch::distributed::rpc::TensorpipeWriteBuffers tpBuffers;
std::tie(sendingTpMessage, tpBuffers) =
torch::distributed::rpc::tensorpipeSerialize(
std::move(sendingRpcMessage));
EXPECT_EQ(tpBuffers.tensors.size(), 2);
EXPECT_EQ(sendingTpMessage.tensors.size(), 2);
EXPECT_TRUE(torch::equal(main, tpBuffers.tensors[0]));
EXPECT_TRUE(torch::equal(tiny, tpBuffers.tensors[1]));
// Test cloned storage
EXPECT_EQ(main.storage().data(), sendingTpMessage.tensors[0].data);
EXPECT_NE(tiny.storage().data(), sendingTpMessage.tensors[1].data);
EXPECT_EQ(tiny.element_size() * k1K, sendingTpMessage.tensors[1].length);
}
TEST(TensorpipeSerialize, NoDeleterTensors) {
std::vector<float> blob1{.8, .2};
std::vector<float> blob2{.7, .5, .9};
at::Tensor t1 = torch::from_blob((float*)(blob1.data()), blob1.size());
at::Tensor t2 = torch::from_blob((float*)(blob2.data()), blob2.size());
std::vector<at::Tensor> tensors{t1, t2};
std::vector<char> payload = {'1', '2', '3'};
torch::distributed::rpc::MessageType mtype =
torch::distributed::rpc::MessageType::UNKNOWN;
torch::distributed::rpc::Message sendingRpcMessage(
std::move(payload), std::move(tensors), mtype);
tensorpipe::Message sendingTpMessage;
torch::distributed::rpc::TensorpipeWriteBuffers tpBuffers;
std::tie(sendingTpMessage, tpBuffers) =
torch::distributed::rpc::tensorpipeSerialize(
std::move(sendingRpcMessage));
EXPECT_EQ(tpBuffers.copiedTensors.size(), 2);
EXPECT_EQ(sendingTpMessage.tensors.size(), 2);
EXPECT_EQ(
tpBuffers.copiedTensors[0].size(), sendingTpMessage.tensors[0].length);
EXPECT_EQ(
tpBuffers.copiedTensors[1].size(), sendingTpMessage.tensors[1].length);
EXPECT_EQ(
tpBuffers.copiedTensors[0].data(), sendingTpMessage.tensors[0].data);
EXPECT_EQ(
tpBuffers.copiedTensors[1].data(), sendingTpMessage.tensors[1].data);
EXPECT_TRUE(
memcmp(
tpBuffers.copiedTensors[0].data(),
t1.storage().data(),
sendingTpMessage.tensors[0].length) == 0);
EXPECT_TRUE(
memcmp(
tpBuffers.copiedTensors[1].data(),
t2.storage().data(),
sendingTpMessage.tensors[1].length) == 0);
}