mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
The goal of this PR is to avoid stack overflow when we create extremely long chains of thunks, and then evaluate them (e.g., as occurs if you sum(long list of symint)). The basic idea behind this PR is to only thunkify proxies if they're being created in places where they may or may not be used--crucially, symint operations that occur in user code we are tracing are eagerly placed into the graph, even if they may eventually be dead. I annotated the PR with explanation of changes. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/132421 Approved by: https://github.com/Skylion007, https://github.com/zou3519 ghstack dependencies: #132674, #132675
7128 lines
257 KiB
Python
7128 lines
257 KiB
Python
# Owner(s): ["oncall: export"]
|
|
# flake8: noqa
|
|
import copy
|
|
import dataclasses
|
|
import io
|
|
import logging
|
|
import operator
|
|
import re
|
|
import unittest
|
|
import warnings
|
|
from contextlib import contextmanager
|
|
from dataclasses import dataclass
|
|
from re import escape
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
import torch._dynamo as torchdynamo
|
|
import torch.nn.functional as F
|
|
from functorch.experimental.control_flow import cond, map
|
|
from torch import Tensor
|
|
from torch._decomp import get_decompositions
|
|
from torch._dynamo.test_case import TestCase
|
|
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse
|
|
from torch._export.utils import (
|
|
get_buffer,
|
|
get_param,
|
|
is_buffer,
|
|
is_param,
|
|
register_dataclass_as_pytree_node,
|
|
)
|
|
from torch._inductor.compile_fx import split_const_gm
|
|
from torch._subclasses import FakeTensorMode
|
|
from torch.export import Dim, dynamic_dim, export, unflatten
|
|
from torch.export._trace import (
|
|
_export,
|
|
_export_to_torch_ir,
|
|
DEFAULT_EXPORT_DYNAMO_CONFIG,
|
|
)
|
|
from torch.export.graph_signature import InputKind
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_cuda import (
|
|
PLATFORM_SUPPORTS_FLASH_ATTENTION,
|
|
SM90OrLater,
|
|
)
|
|
from torch.testing._internal.common_device_type import onlyCPU, onlyCUDA
|
|
from torch.testing._internal.common_utils import (
|
|
find_library_location,
|
|
IS_FBCODE,
|
|
IS_MACOS,
|
|
IS_SANDCASTLE,
|
|
IS_WINDOWS,
|
|
run_tests,
|
|
TEST_TRANSFORMERS,
|
|
TestCase as TorchTestCase,
|
|
)
|
|
from torch.utils._pytree import (
|
|
LeafSpec,
|
|
tree_flatten,
|
|
tree_map,
|
|
tree_unflatten,
|
|
TreeSpec,
|
|
treespec_dumps,
|
|
treespec_loads,
|
|
)
|
|
|
|
|
|
try:
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
|
|
HAS_TORCHREC = True
|
|
except ImportError:
|
|
HAS_TORCHREC = False
|
|
|
|
try:
|
|
from . import testing
|
|
except ImportError:
|
|
import testing
|
|
# The following import pattern matters as `test_export.export` is patched
|
|
# in other files (like test_export_nonstrict.py). `torch.export.export`
|
|
# will invalidate the patch.
|
|
from torch.export import export
|
|
|
|
|
|
torch.library.define("testlib::returns_tensor_symint", "(Tensor x) -> (Tensor, SymInt)")
|
|
torch.library.define(
|
|
"testlib::foo",
|
|
"(Tensor(a!) x, Tensor(b!) z) -> (Tensor, Tensor, Tensor)",
|
|
tags=torch.Tag.pt2_compliant_tag,
|
|
)
|
|
torch.library.define(
|
|
"testlib::foo_mutated",
|
|
"(Tensor(a!) x) -> (Tensor, Tensor)",
|
|
tags=torch.Tag.pt2_compliant_tag,
|
|
)
|
|
torch.library.define(
|
|
"testlib::foo_functional",
|
|
"(Tensor x) -> (Tensor)",
|
|
tags=torch.Tag.pt2_compliant_tag,
|
|
)
|
|
torch.library.define(
|
|
"testlib::foo_unbacked",
|
|
"(Scalar x) -> (Tensor)",
|
|
tags=torch.Tag.pt2_compliant_tag,
|
|
)
|
|
|
|
|
|
@torch.library.impl("testlib::returns_tensor_symint", "cpu")
|
|
@torch.library.impl_abstract("testlib::returns_tensor_symint")
|
|
def returns_tensor_symint_impl(x):
|
|
return x, x.shape[0]
|
|
|
|
|
|
@torch.library.impl("testlib::foo", "cpu")
|
|
@torch._dynamo.disable
|
|
def foo_impl(x, z):
|
|
x.add_(5)
|
|
z.add_(5)
|
|
return x, z, x + z
|
|
|
|
|
|
@torch.library.impl_abstract("testlib::foo")
|
|
def foo_abstract(x, z):
|
|
return x, z, x + z
|
|
|
|
|
|
@torch.library.impl("testlib::foo_mutated", "CompositeImplicitAutograd")
|
|
def foo_mutated(x):
|
|
a, b, c = torch.ops.testlib.foo(x, x.cos())
|
|
return a, a.cos()
|
|
|
|
|
|
@torch.library.impl("testlib::foo_functional", "CompositeImplicitAutograd")
|
|
def foo_functional(x):
|
|
a, b, c = torch.ops.testlib.foo(x.cos(), x.cos())
|
|
return a.cos()
|
|
|
|
|
|
@torch.library.impl("testlib::foo_unbacked", "CompositeImplicitAutograd")
|
|
def foo_unbacked(x):
|
|
if x > 2:
|
|
return torch.ones(4, 4)
|
|
if x < 6:
|
|
return torch.ones(4, 4)
|
|
return torch.ones(4, 4)
|
|
|
|
|
|
@dataclass
|
|
class Inp:
|
|
x: Tensor
|
|
y: List[Tensor]
|
|
z: Dict[str, Tensor]
|
|
|
|
|
|
NON_STRICT_SUFFIX = "_non_strict"
|
|
RETRACEABILITY_SUFFIX = "_retraceability"
|
|
SERDES_SUFFIX = "_serdes"
|
|
PREDISPATCH_SUFFIX = "_pre_dispatch"
|
|
TRAINING_IR_DECOMP_STRICT_SUFFIX = "_training_ir_to_decomp"
|
|
TRAINING_IR_DECOMP_NON_STRICT_SUFFIX = "_training_ir_to_decomp_non_strict"
|
|
|
|
|
|
def is_non_strict_test(test_name):
|
|
return test_name.endswith(NON_STRICT_SUFFIX)
|
|
|
|
|
|
def is_retracebility_test(test_name):
|
|
return test_name.endswith(RETRACEABILITY_SUFFIX)
|
|
|
|
|
|
def is_serdes_test(test_name):
|
|
return test_name.endswith(SERDES_SUFFIX)
|
|
|
|
|
|
def is_training_ir_test(test_name):
|
|
return test_name.endswith(TRAINING_IR_DECOMP_STRICT_SUFFIX) or test_name.endswith(
|
|
TRAINING_IR_DECOMP_NON_STRICT_SUFFIX
|
|
)
|
|
|
|
|
|
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
|
|
class TestDynamismExpression(TestCase):
|
|
def test_export_inline_constraints(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
b = x.item()
|
|
torch._check_is_size(b)
|
|
return torch.full((b, 1), 1)
|
|
|
|
f = Module()
|
|
inp = (torch.tensor([3]),)
|
|
ref = f(*inp)
|
|
|
|
gm = export(f, inp)
|
|
res = gm.module()(*inp)
|
|
|
|
self.assertTrue(torchdynamo.utils.same(ref, res))
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(*inp)
|
|
res = gm(*inp)
|
|
self.assertTrue(torchdynamo.utils.same(ref, res))
|
|
|
|
def test_export_constraints_error_not_in_range(self):
|
|
class InvalidInputConflictWithInputConstraints(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + 1
|
|
|
|
inp = torch.zeros([3])
|
|
dim_x = torch.export.Dim("dim_x", min=6)
|
|
with self.assertRaisesRegex(torch._dynamo.exc.UserError, "not in range"):
|
|
torch.export.export(
|
|
InvalidInputConflictWithInputConstraints(),
|
|
(inp,),
|
|
dynamic_shapes={"x": {0: dim_x}},
|
|
)
|
|
|
|
def test_export_slice_maxsize(self):
|
|
class Slice(torch.nn.Module):
|
|
def forward(self, *args):
|
|
return torch.ops.aten.slice.Tensor(*args)
|
|
|
|
inp = (torch.rand((10, 3, 224, 224)), 0, 0, 9223372036854775807)
|
|
dynamic_shapes = (({0: Dim("dim")}, None, None, None),)
|
|
torch.export.export(
|
|
Slice(),
|
|
inp,
|
|
dynamic_shapes=dynamic_shapes,
|
|
)
|
|
|
|
def test_export_constraints_error(self):
|
|
class ConflictingConstraints(torch.nn.Module):
|
|
def forward(self, x):
|
|
b = x.item()
|
|
torch._check_is_size(b)
|
|
torch._check(b >= 4)
|
|
torch._check(b <= 5)
|
|
torch._check(b <= 5)
|
|
torch._check(True)
|
|
return torch.full((b, 1), 1)
|
|
|
|
inp = (torch.tensor([3]),)
|
|
ep = export(ConflictingConstraints(), inp)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Runtime assertion failed for expression u[\d+] \>\= 4"
|
|
):
|
|
ep.module()(torch.tensor([3]))
|
|
|
|
def test_export_assume_static_by_default(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x: torch.Tensor):
|
|
if x.shape[0] == 4:
|
|
return x + 1
|
|
else:
|
|
return x
|
|
|
|
branch_on_shape = Module()
|
|
inp = (torch.rand(4, 5),)
|
|
|
|
# Being able to export means shape is preserved as static
|
|
export(branch_on_shape, inp)
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows isn't supported for this case")
|
|
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
|
|
class TestExport(TestCase):
|
|
def _test_export_same_as_eager(self, f, args, kwargs=None):
|
|
kwargs = kwargs or {}
|
|
exported_program = export(f, args, kwargs)
|
|
self.assertEqual(exported_program.module()(*args, **kwargs), f(*args, **kwargs))
|
|
# this is not supported by .module()
|
|
# reversed_kwargs = {key: kwargs[key] for key in reversed(kwargs)}
|
|
# self.assertEqual(
|
|
# exported_program.module()(*args, **reversed_kwargs), f(*args, **reversed_kwargs)
|
|
# )
|
|
|
|
def test_basic(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x[0] + y
|
|
|
|
f = Module()
|
|
inp = ([torch.ones(1, 3)], torch.ones(1, 3))
|
|
self._test_export_same_as_eager(f, inp)
|
|
|
|
def test_no_tensor_computation(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return y
|
|
|
|
f = Module()
|
|
inp = ([torch.ones(1, 3)], 1)
|
|
ep = export(f, inp)
|
|
self.assertEqual(ep.module()(*inp), f(*inp))
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x_0 : [num_users=0] = placeholder[target=x_0]
|
|
%y : [num_users=0] = placeholder[target=y]
|
|
return (1,)""",
|
|
)
|
|
|
|
def test_no_tensor_computation_2(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x
|
|
|
|
f = Module()
|
|
inp = (torch.randn(3), 1)
|
|
ep = export(f, inp)
|
|
self.assertEqual(ep.module()(*inp), f(*inp))
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x : [num_users=1] = placeholder[target=x]
|
|
%y : [num_users=0] = placeholder[target=y]
|
|
return (x,)""",
|
|
)
|
|
|
|
def test_no_tensor_computation_3(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return 5
|
|
|
|
f = Module()
|
|
inp = (2, 1)
|
|
ep = export(f, inp)
|
|
self.assertEqual(ep.module()(*inp), f(*inp))
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x : [num_users=0] = placeholder[target=x]
|
|
%y : [num_users=0] = placeholder[target=y]
|
|
return (5,)""",
|
|
)
|
|
|
|
def test_no_tensor_computation_4(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x
|
|
|
|
f = Module()
|
|
inp = ([torch.randn(3)], 1)
|
|
ep = export(f, inp)
|
|
self.assertEqual(ep.module()(*inp), f(*inp))
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x_0 : [num_users=1] = placeholder[target=x_0]
|
|
%y : [num_users=0] = placeholder[target=y]
|
|
return (x_0,)""",
|
|
)
|
|
|
|
def test_not_registered_parameter(self):
|
|
class Basic(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.params = {"foo": torch.nn.Parameter(torch.ones(3, 3))}
|
|
|
|
def forward(self, x):
|
|
return x + self.params["foo"]
|
|
|
|
f = Basic()
|
|
args = (torch.randn(1, 3),)
|
|
# strict-mode will error out because foo is registered as parameter
|
|
# in dynamo (a behavior that's different from eager). We decided to
|
|
# follow eager behavior.
|
|
ep = export(f, args, strict=False)
|
|
gm = ep.module()
|
|
self.assertEqual(len(ep.graph_signature.lifted_tensor_constants), 1)
|
|
self.assertEqual(len(ep.graph_signature.parameters), 0)
|
|
# check foo is not a parameter in the final graph
|
|
self.assertEqual(len(list(gm.named_parameters())), 0)
|
|
self.assertEqual(gm(*args), f(*args))
|
|
self.assertExpectedInline(
|
|
str(gm.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%lifted_tensor_0 : [num_users=1] = get_attr[target=lifted_tensor_0]
|
|
%x : [num_users=1] = placeholder[target=x]
|
|
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %lifted_tensor_0), kwargs = {})
|
|
return (add,)""",
|
|
)
|
|
|
|
def test_external_call_non_strict_real_tensor(self):
|
|
class ExternalMethod:
|
|
def add(self, x):
|
|
return x + x
|
|
|
|
class Basic(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.external_add = ExternalMethod().add
|
|
|
|
def forward(self, x):
|
|
return self.external_add(x)
|
|
|
|
f = Basic()
|
|
args = (torch.randn(1, 3),)
|
|
ep = export(f, args, strict=False)
|
|
self.assertEqual(ep.module()(*args), f(*args))
|
|
|
|
def test_colon_parameter(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.register_parameter("foo:bar", torch.nn.Parameter(torch.ones(3, 3)))
|
|
|
|
def forward(self, x):
|
|
return x + getattr(self, "foo:bar")
|
|
|
|
ep = export(M(), (torch.randn(3, 3),))
|
|
x = torch.randn(3, 3)
|
|
self.assertEqual(ep.module()(x), M()(x))
|
|
|
|
def test_conv_dynamic(self):
|
|
# Simple module for demonstration
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(
|
|
in_channels=3, out_channels=32, kernel_size=3, padding=1
|
|
)
|
|
self.relu = torch.nn.ReLU()
|
|
self.maxpool = torch.nn.MaxPool2d(kernel_size=3)
|
|
|
|
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
|
a = self.conv(x)
|
|
a.add_(y)
|
|
return self.maxpool(self.relu(a))
|
|
|
|
example_args = (torch.randn(2, 3, 256, 256), torch.ones(2, 32, 256, 256))
|
|
dynamic_shapes = {"x": {0: Dim("batch")}, "y": {0: Dim("batch")}}
|
|
m = M()
|
|
exported_program: torch.export.ExportedProgram = export(
|
|
m, args=example_args, dynamic_shapes=dynamic_shapes
|
|
)
|
|
|
|
args = (torch.randn(17, 3, 256, 256), torch.ones(17, 32, 256, 256))
|
|
self.assertEqual(exported_program.module()(*args), m(*args))
|
|
args = (torch.randn(15, 3, 256, 256), torch.ones(15, 32, 256, 256))
|
|
self.assertEqual(exported_program.module()(*args), m(*args))
|
|
|
|
from torch._export import capture_pre_autograd_graph
|
|
|
|
gm: torch.fx.GraphModule = capture_pre_autograd_graph(
|
|
m, args=example_args, dynamic_shapes=dynamic_shapes
|
|
)
|
|
|
|
args = (torch.randn(17, 3, 256, 256), torch.ones(17, 32, 256, 256))
|
|
self.assertEqual(gm(*args), m(*args))
|
|
args = (torch.randn(15, 3, 256, 256), torch.ones(15, 32, 256, 256))
|
|
self.assertEqual(gm(*args), m(*args))
|
|
|
|
# Traced graph contains a WrapWithSetGradEnabled hop but
|
|
# dynamo doesn't support the hop yet so the test fails in strict_mode when re-tracing.
|
|
@testing.expectedFailureRetraceability
|
|
def test_setgrad_lifted_tensor(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
with torch.enable_grad():
|
|
c = torch.tensor(4)
|
|
z = c + x + y
|
|
|
|
return z * z
|
|
|
|
m = M()
|
|
x = torch.randn(4)
|
|
y = torch.randn(4)
|
|
# Need to surround export with no_grad to bypass AutogradStateOpsFailSafeguard.
|
|
with torch.no_grad():
|
|
ep = export(m, (x, y))
|
|
self.assertEqual(ep.module()(x, y), m(x, y))
|
|
|
|
def test_basic_non_strict_real_tensor(self):
|
|
class Basic(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.param = torch.nn.Parameter(torch.randn(1, 3))
|
|
|
|
def forward(self, x, y):
|
|
return x[0] + y - self.param
|
|
|
|
f = Basic()
|
|
args = ([torch.randn(1, 3)], torch.randn(1, 3))
|
|
ep = export(f, args, strict=False)
|
|
self.assertEqual(ep.module()(*args), f(*args))
|
|
|
|
def test_basic_non_strict_fake_tensor(self):
|
|
class Basic(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.param = torch.nn.Parameter(torch.randn(3, 2))
|
|
|
|
def forward(self, x, y):
|
|
return x[0] + y - self.param
|
|
|
|
fake_mode = FakeTensorMode(shape_env=ShapeEnv(tracked_fakes=[]))
|
|
f = Basic()
|
|
with fake_mode:
|
|
args = ([torch.empty(3, 2)], torch.empty(3, 2))
|
|
ep = export(f, args, strict=False)
|
|
inputs = ([torch.randn(3, 2)], torch.randn(3, 2))
|
|
self.assertEqual(ep.module()(*inputs), f(*inputs))
|
|
|
|
def test_non_strict_dynamic_shapes(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.u = torch.nn.Buffer(torch.ones(1))
|
|
self.v = torch.nn.Buffer(torch.ones(1))
|
|
|
|
def forward(self, x, ys, zs, c):
|
|
y = ys[0] + ys[1] + zs["a"] + zs["b"]
|
|
self.v.add_(3)
|
|
w = self.u - self.v
|
|
if x.shape[0] < 3 and c.shape[0] != 4:
|
|
return x + w, x + y
|
|
else:
|
|
return x - w, x - y
|
|
|
|
foo = Foo()
|
|
|
|
inp = (
|
|
torch.ones(5),
|
|
[torch.zeros(5), torch.ones(5)],
|
|
{"a": torch.zeros(5), "b": torch.ones(5)},
|
|
torch.ones(4),
|
|
)
|
|
dim = torch.export.Dim("dim", min=3)
|
|
dynamic_shapes = (
|
|
{0: dim},
|
|
[{0: dim}, {0: dim}],
|
|
{"a": {0: dim}, "b": {0: dim}},
|
|
None,
|
|
)
|
|
|
|
ep_ns = torch.export.export(
|
|
foo, inp, dynamic_shapes=dynamic_shapes, strict=False
|
|
)
|
|
|
|
bad_runtime_inp1 = (
|
|
torch.ones(6),
|
|
[torch.zeros(5), torch.ones(5)],
|
|
{"a": torch.zeros(5), "b": torch.ones(5)},
|
|
torch.ones(4),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
escape(
|
|
"Expected input at *args[1][0].shape[0] to be equal to 6, but got 5"
|
|
),
|
|
):
|
|
ep_ns.module()(*bad_runtime_inp1)
|
|
|
|
bad_runtime_inp2 = (
|
|
torch.ones(5),
|
|
[torch.zeros(5), torch.ones(5)],
|
|
{"a": torch.zeros(5), "b": torch.ones(5)},
|
|
torch.ones(6),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
escape("Expected input at *args[3].shape[0] to be equal to 4, but got 6"),
|
|
):
|
|
ep_ns.module()(*bad_runtime_inp2)
|
|
|
|
good_runtime_inp = (
|
|
torch.ones(7),
|
|
[torch.zeros(7), torch.ones(7)],
|
|
{"a": torch.zeros(7), "b": torch.ones(7)},
|
|
torch.ones(4),
|
|
)
|
|
ep_ns.module()(*good_runtime_inp)
|
|
|
|
bad_example_inp = (
|
|
torch.ones(2),
|
|
[torch.zeros(2), torch.ones(2)],
|
|
{"a": torch.zeros(2), "b": torch.ones(2)},
|
|
torch.ones(4),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
torch.fx.experimental.symbolic_shapes.ConstraintViolationError,
|
|
"2 not in range.*3,",
|
|
):
|
|
ep_ns = torch.export.export(
|
|
foo, bad_example_inp, dynamic_shapes=dynamic_shapes, strict=False
|
|
)
|
|
|
|
def test_non_strict_dynamic_shapes_suggested_fixes(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, c):
|
|
if x.shape[0] <= 6:
|
|
return x + 1, c + 2
|
|
else:
|
|
return x - 1, c - 2
|
|
|
|
foo = Foo()
|
|
|
|
bad_example_inp = (
|
|
torch.ones(5),
|
|
torch.ones(4),
|
|
)
|
|
dim = torch.export.Dim("dim", min=3)
|
|
dynamic_shapes = (
|
|
{0: dim},
|
|
None,
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
"Constraints violated \\(dim\\)!(.*\n)*.*"
|
|
"Not all values of dim.*satisfy the generated guard(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"dim = Dim\\('dim', min=3, max=6\\)",
|
|
):
|
|
torch.export.export(
|
|
foo, bad_example_inp, dynamic_shapes=dynamic_shapes, strict=False
|
|
)
|
|
|
|
def test_state_tensors(self):
|
|
class M(torch.nn.Module): # simple with register buffer
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.ones(2, 3), persistent=False)
|
|
|
|
def forward(self, x):
|
|
# x = 2
|
|
y = self.buf
|
|
# y = 1
|
|
w1 = self.buf + 3
|
|
w2 = self.buf + 4
|
|
w3 = self.buf + 5
|
|
self.buf = w1
|
|
z = self.buf
|
|
self.buf = w3
|
|
# z = 4
|
|
return x + y + z + w2
|
|
|
|
ep = torch.export.export(M(), (torch.randn(2, 3),), strict=False)
|
|
self.assertEqual(ep.graph_signature.buffers_to_mutate, {"add_2": "buf"})
|
|
self.assertTrue(
|
|
torch.allclose(ep.module()(torch.ones(2, 3) + 1), torch.ones(2, 3) * 12)
|
|
)
|
|
|
|
class M(torch.nn.Module): # simple without register buffer
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.ones(2, 3)
|
|
|
|
def forward(self, x):
|
|
# x = 2
|
|
y = self.buf
|
|
# y = 1
|
|
self.buf = self.buf + 3
|
|
z = self.buf
|
|
# z = 3
|
|
return x + y + z
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"The tensor attribute self.buf was assigned during export",
|
|
):
|
|
torch.export.export(M(), (torch.randn(2, 3),), strict=False)
|
|
|
|
class M(torch.nn.Module): # complex with register buffer
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
tensors = [torch.ones(2, 3), torch.ones(2, 3)]
|
|
for i, tensor in enumerate(tensors):
|
|
self.register_buffer(f"buf_{i}", tensor, persistent=False)
|
|
|
|
def get_tensor(self, i):
|
|
return getattr(self, f"buf_{i}")
|
|
|
|
def set_tensor(self, i, val):
|
|
setattr(self, f"buf_{i}", val)
|
|
|
|
def forward(self, x):
|
|
# x = 2
|
|
y = self.get_tensor(0) + self.get_tensor(1)
|
|
# y = 1 + 1
|
|
self.set_tensor(0, torch.ones(2, 3) + 2)
|
|
self.set_tensor(1, torch.ones(2, 3) + 2)
|
|
z = self.get_tensor(0) + self.get_tensor(1)
|
|
# z = 3 + 3
|
|
return x + y + z
|
|
|
|
ep = torch.export.export(M(), (torch.randn(2, 3),), strict=False)
|
|
self.assertEqual(
|
|
ep.graph_signature.buffers_to_mutate, {"add_1": "buf_0", "add_2": "buf_1"}
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(ep.module()(torch.ones(2, 3) + 1), torch.ones(2, 3) * 10)
|
|
)
|
|
|
|
class M(torch.nn.Module): # complex without register buffer
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.tensors = [torch.ones(2, 3), torch.ones(2, 3)]
|
|
|
|
def get_tensor(self, i):
|
|
return self.tensors[i]
|
|
|
|
def set_tensor(self, i, val):
|
|
self.tensors[i] = val
|
|
|
|
def forward(self, x):
|
|
# x = 2
|
|
y = self.get_tensor(0) + self.get_tensor(1)
|
|
# y = 1 + 1
|
|
self.set_tensor(0, torch.ones(2, 3) + 2)
|
|
self.set_tensor(1, torch.ones(2, 3) + 2)
|
|
z = self.get_tensor(0) + self.get_tensor(1)
|
|
# z = 3 + 3
|
|
return x + y + z
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"The tensor attributes self.tensors\\[0\\], self.tensors\\[1\\] were assigned during export",
|
|
):
|
|
torch.export.export(M(), (torch.randn(2, 3),), strict=False)
|
|
|
|
def test_state_primitives(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.x = 1
|
|
self.y = {"k": 2}
|
|
self.z = (3,)
|
|
|
|
def forward(self, x):
|
|
self.x = self.x + 4
|
|
self.y["k"] = self.y["k"] + 5
|
|
self.z = (self.z[0] + 6,)
|
|
return x + self.x + self.y["k"] + self.z[0]
|
|
|
|
ep = export(M(), (torch.randn(2, 3),))
|
|
self.assertTrue(
|
|
torch.allclose(ep.module()(torch.zeros(2, 3)), torch.ones(2, 3) * 21)
|
|
)
|
|
|
|
def test_torch_fn(self):
|
|
class M1(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(3, 3)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = self.linear(x)
|
|
x = self.relu(x)
|
|
x = x + x
|
|
return x
|
|
|
|
ep1 = export(M1(), (torch.randn(3, 3),)).run_decompositions()
|
|
expected_result = [
|
|
("linear_1", "builtin_function_or_method.linear"),
|
|
("linear_1", "builtin_function_or_method.linear"),
|
|
("linear_2", "builtin_function_or_method.linear"),
|
|
("linear_2", "builtin_function_or_method.linear"),
|
|
("relu_1", "function.relu"),
|
|
("add_1", "method_descriptor.add"),
|
|
]
|
|
actual_result = []
|
|
for i, node in enumerate(ep1.graph.nodes):
|
|
if node.op == "call_function":
|
|
actual_result.append(node.meta.get("torch_fn"))
|
|
self.assertEqual(actual_result, expected_result)
|
|
|
|
class M2(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x, weight, bias):
|
|
x = torch.nn.functional.linear(x, weight, bias)
|
|
x = torch.nn.functional.relu(x)
|
|
x = torch.add(x, x)
|
|
return x
|
|
|
|
ep2 = export(
|
|
M2(), (torch.randn(3, 3), torch.randn(3, 3), torch.randn(3))
|
|
).run_decompositions()
|
|
expected_result = [
|
|
("linear_1", "builtin_function_or_method.linear"),
|
|
("linear_1", "builtin_function_or_method.linear"),
|
|
("relu_1", "function.relu"),
|
|
("add_1", "builtin_function_or_method.add"),
|
|
]
|
|
actual_result = []
|
|
for i, node in enumerate(ep2.graph.nodes):
|
|
if node.op == "call_function":
|
|
actual_result.append(node.meta.get("torch_fn"))
|
|
self.assertEqual(actual_result, expected_result)
|
|
|
|
def test_export_predispatch_custom_ops_warnings(self):
|
|
@torch.library.custom_op("mylib::foo", mutates_args={})
|
|
def foo(x: torch.Tensor) -> torch.Tensor:
|
|
return x.sin()
|
|
|
|
@foo.register_fake
|
|
def _(x):
|
|
return torch.empty_like(x)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x):
|
|
return foo(x)
|
|
|
|
x = torch.randn(3)
|
|
|
|
# Assert no warnings
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error")
|
|
torch.export.export(Foo(), (x,))
|
|
|
|
# Assert warning for CompositeImplictAutograd op
|
|
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
|
|
lib.define("foo123(Tensor x) -> Tensor")
|
|
lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd")
|
|
|
|
class Bar(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.ops.mylib.foo123(x)
|
|
|
|
with self.assertWarnsRegex(
|
|
UserWarning, "CompositeImplicitAutograd and have functional schema"
|
|
):
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("always")
|
|
torch.export.export(Bar(), (x,))
|
|
|
|
def test_export_preserve_linear_at_aot_level(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(3, 3)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
return torch.ops.aten.chunk.default(x, 3, 0)
|
|
|
|
gm = (
|
|
torch.export.export(
|
|
Foo(),
|
|
(torch.randn(3, 3),),
|
|
)
|
|
.run_decompositions({}, _preserve_ops=(torch.ops.aten.linear.default,))
|
|
.graph_module
|
|
)
|
|
# linear is CompositeImplicitAutograd functional op so we should preserve it
|
|
# chunk is CompositeImplicitAutograd non-functional op we decompose.
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, p_linear_weight, p_linear_bias, x):
|
|
linear = torch.ops.aten.linear.default(x, p_linear_weight, p_linear_bias); x = p_linear_weight = p_linear_bias = None
|
|
split = torch.ops.aten.split.Tensor(linear, 1); linear = None
|
|
getitem = split[0]
|
|
getitem_1 = split[1]
|
|
getitem_2 = split[2]; split = None
|
|
return (getitem, getitem_1, getitem_2)""",
|
|
)
|
|
|
|
# TODO(yidi)
|
|
# Expected failure for test cases that calls run_decomposition().
|
|
# The top-level cond node has pre-existing metadata,
|
|
# which overrides the metadata for operators in subgraph due to interpreter.run(),
|
|
# where cond is a single node in the interpreter.run(). And we preserve metadata
|
|
# by copying current node's metadata for all nodes created during interpreting.
|
|
@testing.expectedFailurePreDispatchRunDecomp
|
|
@testing.expectedFailureRetraceability
|
|
@testing.expectedFailureTrainingIRToRunDecomp # T193700910
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_export_cond_preserve_torch_fn_for_subgraphs(self):
|
|
class MySubModule(torch.nn.Module):
|
|
def foo(self, x):
|
|
return x.cos()
|
|
|
|
def forward(self, x):
|
|
return self.foo(x)
|
|
|
|
class CondBranchClassMethod(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.subm = MySubModule()
|
|
|
|
def bar(self, x):
|
|
return x.sin()
|
|
|
|
def forward(self, x):
|
|
return cond(x.sum() <= 2, self.subm.forward, self.bar, [x])
|
|
|
|
example_inputs = (torch.randn(1, 3, 3, 3),)
|
|
m = CondBranchClassMethod()
|
|
m.eval()
|
|
gm = export(m, example_inputs).module()
|
|
|
|
actual_torch_fns = []
|
|
for mod in gm.modules():
|
|
for node in mod.graph.nodes:
|
|
if node.name in {"sin", "cos"}:
|
|
torch_fn = node.meta.get("torch_fn")
|
|
print(torch_fn)
|
|
actual_torch_fns.append(torch_fn)
|
|
exp_torch_fns = [
|
|
("cos_1", "method_descriptor.cos"),
|
|
("sin_1", "method_descriptor.sin"),
|
|
]
|
|
self.assertEqual(actual_torch_fns, exp_torch_fns)
|
|
|
|
def test_derived_dim_basic(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x + y[1:]
|
|
|
|
foo = Foo()
|
|
|
|
x, y = torch.randn(5), torch.randn(6)
|
|
dimx = torch.export.Dim("dimx", min=3, max=6)
|
|
|
|
dimy = torch.export.Dim("dimy", min=4, max=7) # doesn't work
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
(
|
|
"Constraints violated \\(dimy\\)!(.*\n)*.*"
|
|
"The values of dimy.*must always be related to the values of dimx.*by.*(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"dimy = dimx \\+ 1"
|
|
),
|
|
):
|
|
export(
|
|
foo,
|
|
(x, y),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}),
|
|
)
|
|
|
|
dimy = dimx * 2 # doesn't work
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
"Expected input.*size.* to be equal to 2\\*dimx, where dimx = 5, but got 6",
|
|
):
|
|
export(
|
|
foo,
|
|
(x, y),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}),
|
|
)
|
|
|
|
dimy = dimx + 1 # works
|
|
ep = export(
|
|
foo,
|
|
(x, y),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 5, but got 6",
|
|
):
|
|
ep.module()(torch.randn(4), torch.randn(6))
|
|
|
|
self.assertEqual(ep.module()(torch.randn(4), torch.randn(5)).size()[0], 4)
|
|
|
|
def test_derived_dim_nested(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x + y[1::2]
|
|
|
|
foo = Foo()
|
|
|
|
x, y = torch.randn(5), torch.randn(11)
|
|
dimx = torch.export.Dim("dimx", min=3, max=6)
|
|
dimy = dimx * 2 + 1 # works
|
|
ep = export(
|
|
foo,
|
|
(x, y),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}),
|
|
)
|
|
self.assertEqual(ep.module()(torch.randn(4), torch.randn(9)).size()[0], 4)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, z, y):
|
|
return z[1:] + y[1::2]
|
|
|
|
foo = Foo()
|
|
|
|
z, y = torch.randn(6), torch.randn(11)
|
|
|
|
dimz = dimx
|
|
dimy = dimx * 2 - 1 # works
|
|
ep = export(
|
|
foo,
|
|
(z, y),
|
|
dynamic_shapes=({0: dimz}, {0: dimy}),
|
|
)
|
|
self.assertEqual(ep.module()(torch.randn(5), torch.randn(9)).size()[0], 4)
|
|
|
|
dimz = dimx + 1
|
|
dimy = dimx * 2 - 1 # doesn't work
|
|
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
"Expected input.*size.*to be equal to 2\\*dimx - 1, where dimx = 5, but got 11",
|
|
):
|
|
export(
|
|
foo,
|
|
(z, y),
|
|
dynamic_shapes=({0: dimz}, {0: dimy}),
|
|
)
|
|
|
|
dimy = dimx * 2 + 1 # works
|
|
ep = export(
|
|
foo,
|
|
(z, y),
|
|
dynamic_shapes=({0: dimz}, {0: dimy}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Expected input.*shape.*to be <= 7, but got 8"
|
|
):
|
|
ep.module()(torch.randn(8), torch.randn(15))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 9, but got 8",
|
|
):
|
|
ep.module()(torch.randn(5), torch.randn(8))
|
|
|
|
self.assertEqual(ep.module()(torch.randn(5), torch.randn(9)).size()[0], 4)
|
|
|
|
def test_derived_dim_integer(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, w):
|
|
if w.shape[0] % 2 == 0:
|
|
return w[::2]
|
|
else:
|
|
return w[1:-1:2]
|
|
|
|
foo = Foo()
|
|
|
|
w = torch.randn(10)
|
|
dimx = torch.export.Dim("dimx", min=3, max=6)
|
|
dimw = dimx * 2 + 1 # doesn't work
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
"Expected shape.*= 10 of input Tensor to be "
|
|
"of the form 2\\*dimx \\+ 1, where dimx is an integer",
|
|
):
|
|
export(
|
|
foo,
|
|
(w,),
|
|
dynamic_shapes=({0: dimw},),
|
|
)
|
|
|
|
dimw = dimx * 2 # works
|
|
ep = export(
|
|
foo,
|
|
(w,),
|
|
dynamic_shapes=({0: dimw},),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*= 9 to be "
|
|
"of the form 2\\*s1, where s1 is an integer",
|
|
):
|
|
ep.module()(torch.randn(9))
|
|
|
|
self.assertEqual(ep.module()(torch.randn(8)).size()[0], 4)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be <= 12, but got 14",
|
|
):
|
|
ep.module()(torch.randn(14))
|
|
|
|
def test_derived_dim_repeat_derived(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, u, v):
|
|
return u[::2] + v[::2]
|
|
|
|
foo = Foo()
|
|
|
|
u, v = torch.randn(10), torch.randn(10)
|
|
dimx = torch.export.Dim("dimx", min=3, max=6)
|
|
dimw = dimx * 2 # works
|
|
ep = export(
|
|
foo,
|
|
(u, v),
|
|
dynamic_shapes=({0: dimw}, {0: dimw}),
|
|
)
|
|
self.assertEqual(ep.module()(torch.randn(8), torch.randn(8)).size()[0], 4)
|
|
|
|
def test_derived_dim_out_of_order(self):
|
|
dimy = torch.export.Dim("dimy", min=5, max=7)
|
|
dimx = dimy - 1 # out of order, effectively dimy = dimx + 1
|
|
dimz = dimy + 1 # out of order, effectively dimz = dimx + 2
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return x + y[1:] + z[2:]
|
|
|
|
foo = Foo()
|
|
|
|
u, v, w = torch.randn(5), torch.randn(6), torch.randn(7)
|
|
ep = export(
|
|
foo,
|
|
(u, v, w),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 8, but got 5",
|
|
):
|
|
ep.module()(torch.randn(6), torch.randn(7), torch.randn(5))
|
|
|
|
self.assertEqual(
|
|
ep.module()(torch.randn(6), torch.randn(7), torch.randn(8)).size()[0], 6
|
|
)
|
|
|
|
def test_derived_dim_out_of_order_repeat_derived(self):
|
|
dimy = torch.export.Dim("dimy", min=5, max=7)
|
|
dimx = dimy - 1 # out of order, effectively dimy = dimx + 1
|
|
dimz = dimy + 1 # out of order, effectively dimz = dimx + 2
|
|
dimx1 = dimx
|
|
dimx2 = dimz - 2 # works, effectively = dimx
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, z, x1, x2):
|
|
return x + y[1:] + z[2:] + x1 + x2
|
|
|
|
foo = Foo()
|
|
|
|
u, v, w, u1, u2 = (
|
|
torch.randn(5),
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(5),
|
|
torch.randn(5),
|
|
)
|
|
ep = export(
|
|
foo,
|
|
(u, v, w, u1, u2),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}, {0: dimx1}, {0: dimx2}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 6, but got 5",
|
|
):
|
|
ep.module()(
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(8),
|
|
torch.randn(6),
|
|
torch.randn(5),
|
|
)
|
|
|
|
self.assertEqual(
|
|
ep.module()(
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(8),
|
|
torch.randn(6),
|
|
torch.randn(6),
|
|
).size()[0],
|
|
6,
|
|
)
|
|
|
|
ep = export(
|
|
foo,
|
|
(u, v, w, u, u), # reused inputs
|
|
dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}, {0: dimx1}, {0: dimx2}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 6, but got 5",
|
|
):
|
|
ep.module()(
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(8),
|
|
torch.randn(6),
|
|
torch.randn(5),
|
|
)
|
|
|
|
self.assertEqual(
|
|
ep.module()(
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(8),
|
|
torch.randn(6),
|
|
torch.randn(6),
|
|
).size()[0],
|
|
6,
|
|
)
|
|
|
|
def test_specialize_derived_dim_roots(self):
|
|
# dim & derived dim both specialize
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x.reshape([-1]) + y
|
|
|
|
dy = Dim("dy", min=6)
|
|
x, y = torch.randn(6, 2), torch.randn(12)
|
|
dynamic_shapes = {
|
|
"x": (dy - 6, 2),
|
|
"y": (dy,),
|
|
}
|
|
try:
|
|
export(Foo(), (x, y), dynamic_shapes=dynamic_shapes)
|
|
raise Exception(
|
|
"export() call should have failed with dynamic shapes error."
|
|
)
|
|
except torch._dynamo.exc.UserError as exc:
|
|
expected_error_msg = (
|
|
"Specializations unexpectedly required \(dy\)!(.*\n)*.*"
|
|
".*solving the guards generated for dy - 6.*resulted in a specialized value of 6(.*\n)*.*"
|
|
"Suggested fixes(.*\n)*.*"
|
|
".*dy = 12(.*\n)*.*"
|
|
)
|
|
self.assertTrue(re.search(expected_error_msg, exc.args[0]) is not None)
|
|
self.assertTrue(
|
|
"dy - 6 = 6" not in exc.args[0]
|
|
) # don't suggest fix for non-root dim
|
|
|
|
def test_keep_composite_ops_invalid(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(3, 3)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
return torch.ops.aten.chunk.default(x, 3, 0)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "aten.chunk.default is a mutating/aliasing op"
|
|
):
|
|
_ = torch.export.export(
|
|
Foo(),
|
|
(torch.randn(3, 3),),
|
|
).run_decompositions({}, _preserve_ops=(torch.ops.aten.chunk.default,))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "aten.sym_size.default is a metadata query function"
|
|
):
|
|
_ = torch.export.export(
|
|
Foo(),
|
|
(torch.randn(3, 3),),
|
|
).run_decompositions({}, _preserve_ops=(torch.ops.aten.sym_size.default,))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"We can't detect aten.native_batch_norm.default as a functional op statically",
|
|
):
|
|
_ = torch.export.export(
|
|
Foo(),
|
|
(torch.randn(3, 3),),
|
|
).run_decompositions(
|
|
{}, _preserve_ops=(torch.ops.aten.native_batch_norm.default,)
|
|
)
|
|
|
|
def test_keep_composite_ops_linear_convd(self):
|
|
class MyLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.randn(20, 98)
|
|
self.bias = torch.randn(20)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.linear(x, self.weight, self.bias)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(16, 33, 3)
|
|
self.conv1d = torch.nn.Conv1d(16, 33, 3)
|
|
self.linear = MyLinear()
|
|
|
|
def forward(self, x, y):
|
|
x_conv = self.conv(x)
|
|
y_conv_1d = self.conv1d(y)
|
|
x_linear = self.linear(x_conv)
|
|
return x_linear.cos() + y_conv_1d.sum()
|
|
|
|
ep = torch.export.export(
|
|
Foo(), (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50))
|
|
)
|
|
ep_has_linear_convd = ep.run_decompositions(
|
|
decomp_table={},
|
|
_preserve_ops=testing._COMPOSITE_OPS_THAT_CAN_BE_PRESERVED_TESTING_ONLY,
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_has_linear_convd.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y):
|
|
conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None
|
|
conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None
|
|
linear = torch.ops.aten.linear.default(conv2d, c_linear_weight, c_linear_bias); conv2d = c_linear_weight = c_linear_bias = None
|
|
cos = torch.ops.aten.cos.default(linear); linear = None
|
|
sum_1 = torch.ops.aten.sum.default(conv1d); conv1d = None
|
|
add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
ep_has_convd = ep.run_decompositions(
|
|
decomp_table=None,
|
|
_preserve_ops=[
|
|
torch.ops.aten.conv2d.default,
|
|
torch.ops.aten.conv1d.default,
|
|
],
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_has_convd.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y):
|
|
conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None
|
|
conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None
|
|
view = torch.ops.aten.view.default(conv2d, [31680, 98]); conv2d = None
|
|
permute = torch.ops.aten.permute.default(c_linear_weight, [1, 0]); c_linear_weight = None
|
|
addmm = torch.ops.aten.addmm.default(c_linear_bias, view, permute); c_linear_bias = view = permute = None
|
|
view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None
|
|
cos = torch.ops.aten.cos.default(view_1); view_1 = None
|
|
sum_1 = torch.ops.aten.sum.dim_IntList(conv1d, []); conv1d = None
|
|
add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
ep_has_convd = ep_has_convd.run_decompositions(
|
|
decomp_table=None, _preserve_ops=[torch.ops.aten.conv2d.default]
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_has_convd.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y):
|
|
conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None
|
|
convolution = torch.ops.aten.convolution.default(y, p_conv1d_weight, p_conv1d_bias, [1], [0], [1], False, [0], 1); y = p_conv1d_weight = p_conv1d_bias = None
|
|
view = torch.ops.aten.view.default(conv2d, [31680, 98]); conv2d = None
|
|
permute = torch.ops.aten.permute.default(c_linear_weight, [1, 0]); c_linear_weight = None
|
|
addmm = torch.ops.aten.addmm.default(c_linear_bias, view, permute); c_linear_bias = view = permute = None
|
|
view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None
|
|
cos = torch.ops.aten.cos.default(view_1); view_1 = None
|
|
sum_1 = torch.ops.aten.sum.dim_IntList(convolution, []); convolution = None
|
|
add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
def test_keep_composite_ops_linear_convd_for_training_ir(self):
|
|
class MyLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Buffer(torch.randn(20, 98))
|
|
self.bias = torch.nn.Buffer(torch.randn(20))
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.linear(x, self.weight, self.bias)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(16, 33, 3)
|
|
self.conv1d = torch.nn.Conv1d(16, 33, 3)
|
|
self.linear = MyLinear()
|
|
|
|
def forward(self, x, y):
|
|
x_conv = self.conv(x)
|
|
y_conv_1d = self.conv1d(y)
|
|
x_linear = self.linear(x_conv)
|
|
return x_linear.cos() + y_conv_1d.sum()
|
|
|
|
ep = torch.export._trace._export_for_training(
|
|
Foo(), (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50))
|
|
)
|
|
ep_has_linear_convd = ep.run_decompositions(
|
|
decomp_table={},
|
|
_preserve_ops=testing._COMPOSITE_OPS_THAT_CAN_BE_PRESERVED_TESTING_ONLY,
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_has_linear_convd.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, b_linear_weight, b_linear_bias, x, y):
|
|
convolution = torch.ops.aten.convolution.default(x, p_conv_weight, p_conv_bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1); x = p_conv_weight = p_conv_bias = None
|
|
convolution_1 = torch.ops.aten.convolution.default(y, p_conv1d_weight, p_conv1d_bias, [1], [0], [1], False, [0], 1); y = p_conv1d_weight = p_conv1d_bias = None
|
|
view = torch.ops.aten.view.default(convolution, [31680, 98]); convolution = None
|
|
t = torch.ops.aten.t.default(b_linear_weight); b_linear_weight = None
|
|
addmm = torch.ops.aten.addmm.default(b_linear_bias, view, t); b_linear_bias = view = t = None
|
|
view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None
|
|
cos = torch.ops.aten.cos.default(view_1); view_1 = None
|
|
sum_1 = torch.ops.aten.sum.default(convolution_1); convolution_1 = None
|
|
add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
ep_has_convd = ep.run_decompositions(
|
|
decomp_table=None,
|
|
_preserve_ops=[
|
|
torch.ops.aten.conv2d.default,
|
|
torch.ops.aten.conv1d.default,
|
|
],
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_has_convd.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, b_linear_weight, b_linear_bias, x, y):
|
|
convolution = torch.ops.aten.convolution.default(x, p_conv_weight, p_conv_bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1); x = p_conv_weight = p_conv_bias = None
|
|
convolution_1 = torch.ops.aten.convolution.default(y, p_conv1d_weight, p_conv1d_bias, [1], [0], [1], False, [0], 1); y = p_conv1d_weight = p_conv1d_bias = None
|
|
view = torch.ops.aten.view.default(convolution, [31680, 98]); convolution = None
|
|
t = torch.ops.aten.t.default(b_linear_weight); b_linear_weight = None
|
|
addmm = torch.ops.aten.addmm.default(b_linear_bias, view, t); b_linear_bias = view = t = None
|
|
view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None
|
|
cos = torch.ops.aten.cos.default(view_1); view_1 = None
|
|
sum_1 = torch.ops.aten.sum.default(convolution_1); convolution_1 = None
|
|
add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
ep_has_convd = ep_has_convd.run_decompositions(
|
|
decomp_table=None, _preserve_ops=[torch.ops.aten.conv2d.default]
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_has_convd.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, b_linear_weight, b_linear_bias, x, y):
|
|
convolution = torch.ops.aten.convolution.default(x, p_conv_weight, p_conv_bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1); x = p_conv_weight = p_conv_bias = None
|
|
convolution_1 = torch.ops.aten.convolution.default(y, p_conv1d_weight, p_conv1d_bias, [1], [0], [1], False, [0], 1); y = p_conv1d_weight = p_conv1d_bias = None
|
|
view = torch.ops.aten.view.default(convolution, [31680, 98]); convolution = None
|
|
permute = torch.ops.aten.permute.default(b_linear_weight, [1, 0]); b_linear_weight = None
|
|
addmm = torch.ops.aten.addmm.default(b_linear_bias, view, permute); b_linear_bias = view = permute = None
|
|
view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None
|
|
cos = torch.ops.aten.cos.default(view_1); view_1 = None
|
|
sum_1 = torch.ops.aten.sum.dim_IntList(convolution_1, []); convolution_1 = None
|
|
add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None
|
|
return (add,)""",
|
|
)
|
|
|
|
@testing.expectedFailureRetraceability # Unexpected type in sourceless builder torch._higher_order_ops.wrap.WrapWithSetGradEnabled
|
|
def test_set_grad_empty(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
with torch.no_grad():
|
|
x = x + 1
|
|
return x, None
|
|
|
|
ep = export(M(), (torch.ones(3, 3),))
|
|
inp = torch.randn(3, 3)
|
|
self.assertTrue(torch.allclose(ep.module()(inp)[0], inp + 1))
|
|
|
|
def test_derived_dim_out_of_order_simplified(self):
|
|
_dimz = torch.export.Dim("_dimz", min=6, max=8)
|
|
dimy = _dimz - 1
|
|
dimx = dimy - 1
|
|
dimz = torch.export.Dim("dimz", min=6, max=8) # doesn't work, should be = _dimz
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return x + y[1:] + z[2:]
|
|
|
|
foo = Foo()
|
|
u, v, w = torch.randn(5), torch.randn(6), torch.randn(7)
|
|
try:
|
|
export(
|
|
foo,
|
|
(u, v, w),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}),
|
|
)
|
|
except torch._dynamo.exc.UserError as exc:
|
|
expected_error_msg = (
|
|
"Constraints violated \(dimz\)!(.*\n)*.*"
|
|
"The values of dimz.*must always be related to the values of _dimz - 2.*by.*(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"dimz = _dimz"
|
|
)
|
|
self.assertTrue(re.search(expected_error_msg, exc.args[0]) is not None)
|
|
# don't suggest fix for non-root dims, and no need to update root here
|
|
self.assertTrue("_dimz - 2 = Dim(" not in exc.args[0])
|
|
self.assertTrue("_dimz - 1 = _dimz - 1" not in exc.args[0])
|
|
self.assertTrue("_dimz = Dim(" not in exc.args[0])
|
|
|
|
dimz = dimx + 2 # works, effectively = _dimz
|
|
ep = export(
|
|
foo,
|
|
(u, v, w),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 8, but got 5",
|
|
):
|
|
ep.module()(torch.randn(6), torch.randn(7), torch.randn(5))
|
|
|
|
self.assertEqual(
|
|
ep.module()(torch.randn(6), torch.randn(7), torch.randn(8)).size()[0], 6
|
|
)
|
|
|
|
def test_simple_export_for_training(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
eager_model = Foo()
|
|
ep_for_training = torch.export._trace._export_for_training(
|
|
eager_model, (torch.ones(2, 2),)
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_for_training.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_linear_weight, p_linear_bias, x):
|
|
linear = torch.ops.aten.linear.default(x, p_linear_weight, p_linear_bias); x = p_linear_weight = p_linear_bias = None
|
|
return (linear,)""",
|
|
)
|
|
gm = ep_for_training.module()
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
|
|
linear_weight = self.linear.weight
|
|
linear_bias = self.linear.bias
|
|
linear = torch.ops.aten.linear.default(x, linear_weight, linear_bias); x = linear_weight = linear_bias = None
|
|
return pytree.tree_unflatten((linear,), self._out_spec)""",
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(gm(torch.ones(2, 2)), eager_model(torch.ones(2, 2)))
|
|
)
|
|
|
|
def test_export_for_training_with_mutation(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buffer = torch.nn.Buffer(torch.ones(4, 4))
|
|
|
|
def forward(self, x):
|
|
x.add_(5)
|
|
self.buffer.add_(5)
|
|
return x + self.buffer
|
|
|
|
eager_model_for_export = Foo()
|
|
eager_model_for_testing = Foo()
|
|
ep_for_training = torch.export._trace._export_for_training(
|
|
eager_model_for_export, (torch.ones(4, 4),)
|
|
)
|
|
self.assertExpectedInline(
|
|
str(ep_for_training.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, b_buffer, x):
|
|
add_ = torch.ops.aten.add_.Tensor(x, 5); x = None
|
|
add__1 = torch.ops.aten.add_.Tensor(b_buffer, 5); b_buffer = None
|
|
add = torch.ops.aten.add.Tensor(add_, add__1); add_ = add__1 = None
|
|
return (add,)""",
|
|
)
|
|
gm = ep_for_training.module()
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
|
|
buffer = self.buffer
|
|
add_ = torch.ops.aten.add_.Tensor(x, 5); x = None
|
|
add__1 = torch.ops.aten.add_.Tensor(buffer, 5); buffer = None
|
|
add = torch.ops.aten.add.Tensor(add_, add__1); add_ = add__1 = None
|
|
return pytree.tree_unflatten((add,), self._out_spec)""",
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
gm(torch.ones(4, 4)), eager_model_for_testing(torch.ones(4, 4))
|
|
)
|
|
)
|
|
|
|
def test_export_for_training_with_dynamic_shapes(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buffer = torch.nn.Buffer(torch.ones(4, 4))
|
|
|
|
def forward(self, x):
|
|
x.add_(5)
|
|
self.buffer.add_(5)
|
|
return x + self.buffer.sum()
|
|
|
|
eager_model_for_export_training = Foo()
|
|
eager_model_for_export_inference = Foo()
|
|
eager_model_for_testing = Foo()
|
|
ep_for_training = torch.export._trace._export_for_training(
|
|
eager_model_for_export_training,
|
|
(torch.ones(4, 4),),
|
|
dynamic_shapes=({0: Dim("x")},),
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep_for_training.module()(torch.ones(2, 4)),
|
|
eager_model_for_testing(torch.ones(2, 4)),
|
|
)
|
|
)
|
|
|
|
ep_for_real = export(
|
|
eager_model_for_export_inference,
|
|
(torch.ones(4, 4),),
|
|
dynamic_shapes=({0: Dim("x")},),
|
|
)
|
|
|
|
self.assertEqual(
|
|
str(ep_for_training.range_constraints), str(ep_for_real.range_constraints)
|
|
)
|
|
|
|
def test_export_for_training_with_container_type(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buffer = torch.nn.Buffer(torch.ones(4, 4))
|
|
|
|
def forward(self, container):
|
|
x = container[0][0]
|
|
y = container[0][1]
|
|
x.add_(5)
|
|
y.add_(5)
|
|
return x + y + self.buffer.sum()
|
|
|
|
eager_model = Foo()
|
|
ep_for_training = torch.export._trace._export_for_training(
|
|
eager_model,
|
|
([torch.ones(4, 4), torch.ones(4, 4)],),
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep_for_training.module()(
|
|
([torch.ones(4, 4), torch.ones(4, 4)]),
|
|
),
|
|
eager_model(([torch.ones(4, 4), torch.ones(4, 4)])),
|
|
)
|
|
)
|
|
|
|
def test_export_for_training_run_decomp(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buffer = torch.nn.Buffer(torch.ones(2, 2))
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
|
|
def forward(self, x):
|
|
self.buffer.add_(5)
|
|
return self.linear(x) + self.buffer.sum()
|
|
|
|
eager_model = Foo()
|
|
ep_for_training = torch.export._trace._export_for_training(
|
|
eager_model,
|
|
(torch.ones(2, 2),),
|
|
)
|
|
ep_for_inference = ep_for_training.run_decompositions()
|
|
self.assertExpectedInline(
|
|
str(ep_for_inference.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, p_linear_weight, p_linear_bias, b_buffer, x):
|
|
add = torch.ops.aten.add.Tensor(b_buffer, 5); b_buffer = None
|
|
t = torch.ops.aten.t.default(p_linear_weight); p_linear_weight = None
|
|
addmm = torch.ops.aten.addmm.default(p_linear_bias, x, t); p_linear_bias = x = t = None
|
|
sum_1 = torch.ops.aten.sum.default(add)
|
|
add_1 = torch.ops.aten.add.Tensor(addmm, sum_1); addmm = sum_1 = None
|
|
return (add, add_1)""",
|
|
)
|
|
|
|
def test_derived_dim_out_of_order_simplified_repeat_non_derived(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, y1, z):
|
|
return x + y[1:] + y1[1:] + z[2:]
|
|
|
|
foo = Foo()
|
|
|
|
u, v, v1, w = torch.randn(5), torch.randn(6), torch.randn(6), torch.randn(7)
|
|
_dimz = torch.export.Dim("_dimz", min=6, max=8)
|
|
dimy = _dimz - 1
|
|
dimx = dimy - 1
|
|
dimz = dimx + 2 # works, effectively = _dimz
|
|
ep = export(
|
|
foo,
|
|
(u, v, v1, w),
|
|
dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimy}, {0: dimz}),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected input.*shape.*to be equal to 7, but got 5",
|
|
):
|
|
ep.module()(
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(5),
|
|
torch.randn(8),
|
|
)
|
|
|
|
self.assertEqual(
|
|
ep.module()(
|
|
torch.randn(6),
|
|
torch.randn(7),
|
|
torch.randn(7),
|
|
torch.randn(8),
|
|
).size()[0],
|
|
6,
|
|
)
|
|
|
|
def test_static_dim_constraints(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.l = torch.nn.Linear(6, 4)
|
|
|
|
def forward(self, x, y, z):
|
|
x0 = self.l(x) + y[1:]
|
|
return x0, z * 2.0
|
|
|
|
foo = Foo()
|
|
inputs = (torch.randn(4, 6), torch.randn(5, 4), torch.randn(3, 3))
|
|
dx = Dim("dx", min=3, max=6)
|
|
dy = dx + 1
|
|
dz = Dim("dz", min=3, max=6)
|
|
|
|
# all of these should be fine
|
|
for dynamic_shapes in [
|
|
({0: dx, 1: 6}, {0: dy, 1: 4}, {0: dz, 1: 3}),
|
|
((dx, None), (dy, 4), (dz, 3)),
|
|
((None, 6), (5, None), (None, None)),
|
|
((4, 6), {0: None, 1: 4}, {0: None, 1: 3}),
|
|
]:
|
|
ep = export(foo, inputs, dynamic_shapes=dynamic_shapes)
|
|
self.assertEqual(foo(*inputs), ep.module()(*inputs))
|
|
|
|
# check range_constraints - static dims shouldn't be present
|
|
ep = export(foo, inputs, dynamic_shapes=((dx, None), (dy, 4), (dz, 3)))
|
|
self.assertEqual(len(ep.range_constraints), 3)
|
|
for vr in ep.range_constraints.values():
|
|
self.assertTrue(vr.lower < vr.upper)
|
|
|
|
# check raised errors
|
|
with self.assertRaisesRegex(
|
|
(
|
|
torch.fx.experimental.symbolic_shapes.ConstraintViolationError,
|
|
torch._dynamo.exc.UserError,
|
|
),
|
|
"Static shape constraint of 5 does not match input size of 4, for .*",
|
|
):
|
|
_ = export(foo, inputs, dynamic_shapes=((5, None), None, None))
|
|
with self.assertRaisesRegex(
|
|
(
|
|
torch.fx.experimental.symbolic_shapes.ConstraintViolationError,
|
|
torch._dynamo.exc.UserError,
|
|
),
|
|
"Static shape constraint of 9 does not match input size of 6, for .*",
|
|
):
|
|
_ = export(foo, inputs, dynamic_shapes=((dx, 9), (dy, 4), (3, 3)))
|
|
|
|
def test_dim_1_2(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x * 2
|
|
|
|
dx = Dim("dx", min=1, max=2)
|
|
ep = export(Foo(), (torch.randn(2, 2),), dynamic_shapes=({0: dx, 1: None},))
|
|
ep.module()(torch.randn(1, 2))
|
|
ep.module()(torch.randn(2, 2))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Expected input at .* to be <= 2, but got 3"
|
|
):
|
|
ep.module()(torch.randn(3, 2))
|
|
vr = list(ep.range_constraints.values())[0]
|
|
self.assertEqual(vr.lower, 1)
|
|
self.assertEqual(vr.upper, 2)
|
|
|
|
def test_derived_dim_1_2(self):
|
|
class Bar(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x + y[1:]
|
|
|
|
dx = Dim("dx", min=1, max=2)
|
|
ep = export(
|
|
Bar(),
|
|
(torch.randn(2, 2), torch.randn(3, 2)),
|
|
dynamic_shapes=({0: dx, 1: None}, {0: dx + 1, 1: None}),
|
|
)
|
|
ep.module()(torch.randn(1, 2), torch.randn(2, 2))
|
|
range_lower_bounds = sorted(vr.lower for vr in ep.range_constraints.values())
|
|
range_upper_bounds = sorted(vr.upper for vr in ep.range_constraints.values())
|
|
self.assertEqual(range_lower_bounds, [1, 2])
|
|
self.assertEqual(range_upper_bounds, [2, 3])
|
|
|
|
def test_dynamic_shapes_builder_basic(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return x + y[0] + z["k"]
|
|
|
|
m = M()
|
|
|
|
x = torch.randn(4)
|
|
y = [torch.randn(4)]
|
|
z = {"k": torch.randn(4)}
|
|
args = (x, y, z)
|
|
|
|
shapes_collection = torch.export.ShapesCollection()
|
|
dim = torch.export.Dim("dim", max=10)
|
|
shapes_collection[x] = (dim,)
|
|
shapes_collection[y[0]] = (dim,)
|
|
shapes_collection[z["k"]] = (dim,)
|
|
|
|
ep = export(m, args, dynamic_shapes=shapes_collection)
|
|
sym = next(iter(ep.range_constraints.keys()))
|
|
for node in ep.graph.nodes:
|
|
if node.op == "placeholder":
|
|
self.assertEqual(str(tuple(node.meta["val"].shape)), f"({sym},)")
|
|
|
|
def test_dynamic_shapes_builder_kwargs(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return x + y[0] + z["k"]
|
|
|
|
m = M()
|
|
|
|
x = torch.randn(4)
|
|
y = [torch.randn(4)]
|
|
z = {"k": torch.randn(4)}
|
|
args = (x,)
|
|
kwargs = {"z": z, "y": y}
|
|
|
|
shapes_collection = torch.export.ShapesCollection()
|
|
dim = torch.export.Dim("dim", max=10)
|
|
shapes_collection[x] = (dim,)
|
|
shapes_collection[y[0]] = (dim,)
|
|
shapes_collection[z["k"]] = (dim,)
|
|
|
|
ep = export(m, args, kwargs=kwargs, dynamic_shapes=shapes_collection)
|
|
sym = next(iter(ep.range_constraints.keys()))
|
|
for node in ep.graph.nodes:
|
|
if node.op == "placeholder":
|
|
self.assertEqual(str(tuple(node.meta["val"].shape)), f"({sym},)")
|
|
|
|
# retracing doesn't seem to like dataclass registration,
|
|
# raising a dynamo error in fx_pytree.tree_flatten_spec
|
|
@testing.expectedFailureRetraceability
|
|
def test_dynamic_shapes_builder_pytree(self):
|
|
torch.export.register_dataclass(
|
|
Inp,
|
|
serialized_type_name="test_dynamic_shapes_builder_pytree.Inp",
|
|
)
|
|
|
|
class M(torch.nn.Module):
|
|
def forward(self, inp: Inp):
|
|
return inp.x + inp.y[0] + inp.z["k"]
|
|
|
|
m = M()
|
|
x = torch.randn(4)
|
|
y = [torch.randn(4)]
|
|
z = {"k": torch.randn(4)}
|
|
args = (Inp(x, y, z),)
|
|
|
|
shapes_collection = torch.export.ShapesCollection()
|
|
dim = torch.export.Dim("dim", max=10)
|
|
shapes_collection[x] = (dim,)
|
|
shapes_collection[y[0]] = (dim,)
|
|
shapes_collection[z["k"]] = (dim,)
|
|
|
|
ep = export(m, args, dynamic_shapes=shapes_collection.dynamic_shapes(m, args))
|
|
sym = next(iter(ep.range_constraints.keys()))
|
|
for node in ep.graph.nodes:
|
|
if node.op == "placeholder":
|
|
self.assertEqual(str(tuple(node.meta["val"].shape)), f"({sym},)")
|
|
|
|
def test_torch_check_eq_commutativity(self):
|
|
class M1(torch.nn.Module):
|
|
def forward(self, x1, x2, x3, y):
|
|
z1 = x1.item()
|
|
z2 = x2.item()
|
|
z3 = x3.item()
|
|
# instead of: torch._check((z2 + z3) == z1)
|
|
torch._check(z1 == (z2 + z3))
|
|
if z2 + z3 == z1:
|
|
return y * 2
|
|
else:
|
|
return y + 3
|
|
|
|
export(
|
|
M1(),
|
|
(torch.tensor(6), torch.tensor(3), torch.tensor(3), torch.randn(1)),
|
|
)
|
|
|
|
class M2(torch.nn.Module):
|
|
def forward(self, x1, x2, x3, y):
|
|
z1 = x1.item()
|
|
z2 = x2.item()
|
|
z3 = x3.item()
|
|
# instead of: torch._check((z2 + z3) != z1)
|
|
torch._check(z1 != (z2 + z3))
|
|
if z2 + z3 == z1:
|
|
return y * 2
|
|
else:
|
|
return y + 3
|
|
|
|
export(
|
|
M2(),
|
|
(torch.tensor(6), torch.tensor(6), torch.tensor(6), torch.randn(1)),
|
|
)
|
|
|
|
def test_raise_user_error_when_guard_on_data_dependent_operation(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = x.nonzero()
|
|
z = y.shape[0]
|
|
if z > 2:
|
|
return x.cos()
|
|
else:
|
|
return x.sin()
|
|
|
|
with self.assertRaisesRegex(
|
|
(
|
|
torchdynamo.exc.UserError,
|
|
torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode,
|
|
),
|
|
"Could not guard on data-dependent expression",
|
|
):
|
|
_ = export(M(), (torch.tensor([2, 3, 5]),))
|
|
|
|
def test_suggested_fixes_for_data_dependent_errors_basic(self):
|
|
# suggested fixes for data-dependent errors only work in non-strict mode
|
|
strict = False
|
|
error_type = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
|
|
|
|
# Just to introduce some indirection: N is a top-level module N that calls
|
|
# module M, defined next.
|
|
class N(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.m = M()
|
|
|
|
def forward(self, t):
|
|
return self.m(t) + 1
|
|
|
|
# example input
|
|
t = torch.tensor([1, 4, 4], dtype=torch.int32)
|
|
|
|
# We define a series of versions of M() below. Each version has
|
|
# raises a data-dependent error that the next version fixes, by
|
|
# copy-pasting a suggested fix in the error message. The fix is
|
|
# always a torch.check() on an unresolved condition (or its negation)
|
|
# on unbacked symints mentioned in the error message.
|
|
# Note that the suggested fixes are in terms of local variables
|
|
# near the location of error that "contain" the unbacked symints
|
|
# in the unresolved condition (either directly or indirectly, e.g.,
|
|
# inside a list or inside the shape of a tensor).
|
|
|
|
class M_v0(torch.nn.Module):
|
|
def forward(self, t):
|
|
items = [t[i].item() for i in range(t.numel())]
|
|
r = torch.randn([items[0], items[1]])
|
|
# Could not guard on data-dependent expression Eq(u2, -1)
|
|
return r.view(items[0], items[2])
|
|
|
|
M = M_v0
|
|
with self.assertRaisesRegex(
|
|
error_type,
|
|
"The following call raised this error(.*\n)+"
|
|
f".*{re.escape('return r.view(items[0], items[2])')}(.*\n)+"
|
|
"To fix the error, insert one of the following checks before this call.*:\n"
|
|
f".*{re.escape('torch._check(items[2] == (-1))')}.*\n"
|
|
f".*{re.escape('torch._check(items[2] != (-1))')}(.*\n)+"
|
|
f".*{re.escape('(These suggested fixes were derived by replacing `u2` with items[2] in Eq(u2, -1) and its negation.)')}",
|
|
):
|
|
export(N(), (t,), strict=strict)
|
|
|
|
class M_v1(torch.nn.Module):
|
|
def forward(self, t):
|
|
items = [t[i].item() for i in range(t.numel())]
|
|
r = torch.randn([items[0], items[1]])
|
|
# Could not guard on data-dependent expression Eq(u2, -1)
|
|
torch._check(items[2] != -1)
|
|
# Could not guard on data-dependent expression u2 >= 0
|
|
return r.view(items[0], items[2])
|
|
|
|
M = M_v1
|
|
with self.assertRaisesRegex(
|
|
error_type,
|
|
"The following call raised this error(.*\n)+"
|
|
f".*{re.escape('return r.view(items[0], items[2])')}(.*\n)+"
|
|
"To fix the error, insert one of the following checks before this call.*:\n"
|
|
f".*{re.escape('torch._check(items[2] >= 0)')}.*\n"
|
|
f".*{re.escape('torch._check(items[2] < 0)')}(.*\n)+"
|
|
f".*{re.escape('(These suggested fixes were derived by replacing `u2` with items[2] in u2 >= 0 and its negation.)')}",
|
|
):
|
|
export(N(), (t,), strict=strict)
|
|
|
|
class M_v2(torch.nn.Module):
|
|
def forward(self, t):
|
|
items = [t[i].item() for i in range(t.numel())]
|
|
r = torch.randn([items[0], items[1]])
|
|
# Could not guard on data-dependent expression Eq(u2, -1)
|
|
torch._check(items[2] != -1)
|
|
# Could not guard on data-dependent expression u2 >= 0
|
|
torch._check(items[2] >= 0)
|
|
# Could not guard on data-dependent expression Eq(u1, u2)
|
|
return r.view(items[0], items[2])
|
|
|
|
M = M_v2
|
|
with self.assertRaisesRegex(
|
|
error_type,
|
|
"The following call raised this error(.*\n)+"
|
|
f".*{re.escape('return r.view(items[0], items[2])')}(.*\n)+"
|
|
"To fix the error, insert one of the following checks before this call.*:\n"
|
|
f".*{re.escape('torch._check(items[2] == items[1])')}.*\n"
|
|
f".*{re.escape('torch._check(items[2] != items[1])')}(.*\n)+"
|
|
f".*{re.escape('(These suggested fixes were derived by replacing `u1` with items[1] or r.shape[1], `u2` with items[2] in Eq(u2, u1) and its negation.)')}",
|
|
):
|
|
export(N(), (t,), strict=strict)
|
|
|
|
class M_v3(torch.nn.Module):
|
|
def forward(self, t):
|
|
items = [t[i].item() for i in range(t.numel())]
|
|
r = torch.randn([items[0], items[1]])
|
|
# Could not guard on data-dependent expression Eq(u2, -1)
|
|
torch._check(items[2] != -1)
|
|
# Could not guard on data-dependent expression u2 >= 0
|
|
torch._check(items[2] >= 0)
|
|
# Could not guard on data-dependent expression Eq(u1, u2)
|
|
torch._check(items[2] == r.shape[1])
|
|
return r.view(items[0], items[2])
|
|
|
|
M = M_v3
|
|
export(N(), (t,), strict=strict)
|
|
|
|
@testing.expectedFailureTrainingIRToRunDecomp
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict # unbacked symint not tracked?
|
|
@testing.expectedFailureSerDer # T195866111
|
|
def test_suggested_fixes_for_data_dependent_errors_puzzlers(self):
|
|
# suggested fixes for data-dependent errors only work in non-strict mode
|
|
strict = False
|
|
error_type = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
|
|
|
|
def retry_export(m, inp, fixes):
|
|
# API that applies a series of fixes, retrying export after applying each fix,
|
|
# and asserting the applied fix was suggested in the previous try.
|
|
# Using this API avoids the need to define multiple versions of the same test
|
|
# module, as in `test_suggested_fixes_for_data_dependent_errors_basic` above.
|
|
import re
|
|
|
|
def code(snippets):
|
|
return f"[{', '.join(snippets)}]"
|
|
|
|
for i in range(len(fixes)):
|
|
with self.assertRaisesRegex(error_type, re.escape(fixes[i])):
|
|
export(m, (*inp, code(fixes[:i])), strict=strict)
|
|
export(m, (*inp, code(fixes)), strict=strict)
|
|
|
|
# The following examples are lifted from @ezyang's "Data-dependent shape puzzlers"
|
|
# notebook at https://www.internalfb.com/intern/anp/view/?id=5330476
|
|
|
|
# These test modules are written in a way that works well with retry_export above.
|
|
# Specifically, they take an extra `fixes` argument and `eval` it at the location
|
|
# that is expected to raise errors.
|
|
|
|
class cf_implicitsize(torch.nn.Module):
|
|
def forward(self, x, y, fixes):
|
|
i = x.item()
|
|
eval(fixes)
|
|
# instead of y[i]
|
|
return y.narrow(0, i, 1).squeeze()
|
|
|
|
retry_export(
|
|
cf_implicitsize(),
|
|
(torch.tensor(2), torch.randn(10)),
|
|
fixes=[
|
|
# Could not guard on data-dependent expression u0 < 0
|
|
"torch._check(i >= 0)",
|
|
],
|
|
)
|
|
|
|
class cf_nomemo(torch.nn.Module):
|
|
def forward(self, x, y, fixes):
|
|
i = y[0].item()
|
|
eval(fixes)
|
|
return x.unsqueeze(1).expand(-1, i)
|
|
|
|
retry_export(
|
|
cf_nomemo(),
|
|
(torch.randn(8), torch.tensor([2])),
|
|
fixes=[
|
|
# Could not guard on data-dependent expression Eq(u0, 1)
|
|
"torch._check(i != 1)",
|
|
# Could not guard on data-dependent expression Ne(u0, -1)
|
|
"torch._check(i != (-1))",
|
|
],
|
|
)
|
|
|
|
class cf_changevar(torch.nn.Module):
|
|
def forward(self, x, fixes):
|
|
i = x.item()
|
|
eval(fixes)
|
|
r = torch.arange(i // 2)
|
|
return r + r
|
|
|
|
retry_export(
|
|
cf_changevar(),
|
|
(torch.tensor(20),),
|
|
fixes=[
|
|
# Could not guard on data-dependent expression Eq((u0//2), 0)
|
|
"torch._check(((i//2)) != 0)",
|
|
# Could not guard on data-dependent expression Eq((u0//2), 1)
|
|
"torch._check(((i//2)) != 1)",
|
|
],
|
|
)
|
|
|
|
class cf_stacklist(torch.nn.Module):
|
|
def forward(self, xs, y, fixes):
|
|
i = y.item()
|
|
eval(fixes)
|
|
# instead of xs[i]
|
|
return torch.stack(xs, 0).narrow(0, i, 1).squeeze()
|
|
|
|
retry_export(
|
|
cf_stacklist(),
|
|
([torch.ones(5) * i for i in range(10)], torch.tensor(2)),
|
|
fixes=[
|
|
# Could not guard on data-dependent expression u0 < 0
|
|
"torch._check(i >= 0)",
|
|
],
|
|
)
|
|
|
|
class cf_tensorsplit(torch.nn.Module):
|
|
def forward(self, x, offsets_t, fixes):
|
|
lengths = torch.diff(offsets_t).tolist()
|
|
rs = []
|
|
start = 0
|
|
for length in lengths:
|
|
eval(fixes)
|
|
rs.append(x.narrow(0, start, length))
|
|
start += length
|
|
return rs
|
|
|
|
retry_export(
|
|
cf_tensorsplit(),
|
|
(torch.arange(10), torch.tensor([0, 2, 5, 7, 10])),
|
|
fixes=[], # nothing to fix!
|
|
)
|
|
|
|
def test_if_functional(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
z = x + 4
|
|
z.add_(4)
|
|
y = z.view(x.shape)
|
|
return x.cos() + y.cos()
|
|
|
|
foo = Module()
|
|
gm = export(foo, (torch.tensor([2, 3, 5]),))
|
|
|
|
view_count = 0
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and node.target == torch.ops.aten.add_.Tensor:
|
|
# No more inplace mutation
|
|
self.assertNotEqual(
|
|
node.target,
|
|
torch.ops.aten.add_.Tensor,
|
|
"There shouldn't be any inplace mutation node in the graph.",
|
|
)
|
|
if (
|
|
node.op == "call_function"
|
|
and node.target == torch.ops.aten.view.default
|
|
):
|
|
view_count += 1
|
|
|
|
# There should be nonzero view nodes in the graph
|
|
self.assertTrue(view_count > 0)
|
|
|
|
def test_solver_unsupported_sympy_function(self):
|
|
# repro of https://github.com/pytorch/pytorch/issues/131897
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, y):
|
|
x = torch.nn.functional.interpolate(
|
|
x, scale_factor=0.5, mode="bilinear"
|
|
)
|
|
x = torch.nn.functional.interpolate(
|
|
x, scale_factor=2.0, mode="bilinear"
|
|
)
|
|
x = x + y
|
|
return x
|
|
|
|
model = MyModule().eval()
|
|
|
|
inputs = (
|
|
torch.rand((1, 1, 32, 32)),
|
|
torch.rand((1, 1, 32, 32)),
|
|
)
|
|
|
|
dim = torch.export.Dim("Dim", min=16, max=64)
|
|
dynamic_shapes = {"x": {2: dim, 3: dim}, "y": {2: dim, 3: dim}}
|
|
|
|
exported_program = export(model, inputs, dynamic_shapes=dynamic_shapes)
|
|
self.assertEqual(exported_program.module()(*inputs), model(*inputs))
|
|
|
|
def test_export_mod_constraints(self):
|
|
class BasicDynamiShapeModel(torch.nn.Module):
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x.view(x.shape[0] - 1, -1)
|
|
|
|
m = BasicDynamiShapeModel()
|
|
a = torch.randn(3, 4)
|
|
dim0_x = torch.export.Dim("dim0_x", min=3)
|
|
dim1_x = torch.export.Dim("dim1_x", max=8000)
|
|
dynamic_shapes = {"x": (dim0_x, dim1_x)}
|
|
em = torch.export._trace._export(
|
|
m,
|
|
(a,),
|
|
dynamic_shapes=dynamic_shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
em.module()(torch.randn(4, 3))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Eq\(Mod\(s0\*s1, s0 \- 1\), 0\)",
|
|
):
|
|
em.module()(torch.randn(4, 5))
|
|
|
|
dim0_x = None
|
|
dim1_x = 2 * torch.export.Dim("_dim1_x", max=4000)
|
|
dynamic_shapes = {"x": (dim0_x, dim1_x)}
|
|
em = torch.export.export(m, (a,), dynamic_shapes=dynamic_shapes)
|
|
x = torch.randn(3, 5)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected.*shape\\[1\\] = 5 to be of the form 2\\*s1, where s1 is an integer",
|
|
):
|
|
em.module()(x)
|
|
|
|
def test_not_correct_dim(self):
|
|
def f(x):
|
|
return x.cos()
|
|
|
|
def g(x):
|
|
return x + 4
|
|
|
|
inp_for_f = torch.tensor(5)
|
|
with self.assertRaisesRegex(
|
|
torchdynamo.exc.UserError, "Cannot mark 0-dimension tensors to be dynamic"
|
|
):
|
|
constraints = [dynamic_dim(inp_for_f, 0)]
|
|
|
|
inp_for_f_mul_dim = torch.ones(5, 5)
|
|
with self.assertRaisesRegex(
|
|
torchdynamo.exc.UserError,
|
|
"Expected the dimension passed to dynamic_dim to be in the range \\[0:1\\]",
|
|
):
|
|
constraints = [dynamic_dim(inp_for_f_mul_dim, 2)]
|
|
|
|
inp_for_g = 4
|
|
with self.assertRaisesRegex(
|
|
torchdynamo.exc.UserError, "Expected tensor as input to dynamic_dim"
|
|
):
|
|
constraints = [dynamic_dim(inp_for_g, 0)]
|
|
|
|
@testing.expectedFailureRetraceability # T183144629
|
|
def test_map(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, xs, y, z):
|
|
def body(x, y, z):
|
|
return x + y + z
|
|
|
|
return map(body, xs, y, z)
|
|
|
|
list_tensor_map = Module()
|
|
inps = (torch.ones(6, 4), torch.tensor(5), torch.tensor(4))
|
|
self._test_export_same_as_eager(list_tensor_map, inps)
|
|
|
|
@unittest.expectedFailure
|
|
def test_crop_like(self):
|
|
# https://fb.workplace.com/groups/1405155842844877/posts/8195050017188725/
|
|
|
|
# Minimal crop code copied from https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/functional
|
|
class CropLike(torch.nn.Module):
|
|
def forward(self, image, crop_height, crop_width):
|
|
c, image_height, image_width = image.shape
|
|
crop_top = int(round((image_height - crop_height) / 2.0))
|
|
crop_left = int(round((image_width - crop_width) / 2.0))
|
|
return image[
|
|
...,
|
|
crop_top : crop_top + crop_height,
|
|
crop_left : crop_left + crop_width,
|
|
]
|
|
|
|
crop = CropLike()
|
|
imagew = Dim("width")
|
|
imageh = Dim("height")
|
|
dynamic_dims = {
|
|
"image": {0: None, 1: imageh, 2: imagew},
|
|
"crop_height": None,
|
|
"crop_width": None,
|
|
}
|
|
args = (torch.rand(3, 512, 512), 150, 150)
|
|
ecrop = export(crop, args=args, dynamic_shapes=dynamic_dims)
|
|
|
|
args = (torch.rand(3, 700, 700), 150, 150)
|
|
self.assertEqual(ecrop.module()(*args), ecrop(*args))
|
|
|
|
def test_export_func_with_kwargs(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, kw1, kw2):
|
|
return arg1 + arg2, kw1 + kw2
|
|
|
|
kw_func = Module()
|
|
args = (torch.ones(6, 4), torch.ones(1, 1))
|
|
kwargs = {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}
|
|
self._test_export_same_as_eager(kw_func, args, kwargs)
|
|
|
|
def test_export_func_with_pytree_kwargs(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, a, b):
|
|
return arg1 + a["kw1"] + b[0], arg2 + a["kw2"] + b[1]
|
|
|
|
kw_func = Module()
|
|
args = (torch.ones(2, 3), torch.ones(3, 4))
|
|
kwargs = {
|
|
"a": {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)},
|
|
"b": [torch.ones(2, 3), torch.ones(3, 4)],
|
|
}
|
|
self._test_export_same_as_eager(kw_func, args, kwargs)
|
|
|
|
def test_export_func_with_default_kwargs(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, a, b=1):
|
|
return arg1 + arg2, a["kw1"] + a["kw2"] + b
|
|
|
|
kw_func = Module()
|
|
|
|
class Module2(torch.nn.Module):
|
|
def forward(self, arg1, arg2, a=1, b=2):
|
|
return arg1 + a, arg2 + b
|
|
|
|
kw_func2 = Module2()
|
|
|
|
args = (torch.ones(6, 4), torch.ones(1, 1))
|
|
kwargs1 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}}
|
|
kwargs2 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}, "b": 2}
|
|
self._test_export_same_as_eager(kw_func, args, kwargs1)
|
|
self._test_export_same_as_eager(kw_func, args, kwargs2)
|
|
kwargs3 = {"b": 1}
|
|
self._test_export_same_as_eager(kw_func2, args, kwargs3)
|
|
|
|
def test_export_func_with_var_postional_args(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, *args):
|
|
return arg1 + args[0], arg2 + args[1]
|
|
|
|
kw_func = Module()
|
|
args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4))
|
|
self._test_export_same_as_eager(kw_func, args)
|
|
|
|
def test_export_func_with_keyword_only_args(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, *args, kw1, kw2):
|
|
return arg1 + args[0] + kw1, arg2 + args[1] + kw2
|
|
|
|
kw_func = Module()
|
|
args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4))
|
|
kwargs = {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)}
|
|
self._test_export_same_as_eager(kw_func, args, kwargs)
|
|
|
|
def test_export_func_with_var_keyword_args(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, *args, kw1, kw2, **kwargs):
|
|
return (
|
|
arg1 + args[0] + kw1 + kwargs["kw3"],
|
|
arg2 + args[1] + kw2 + kwargs["kw4"],
|
|
)
|
|
|
|
kw_func = Module()
|
|
args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4))
|
|
kwargs = {
|
|
"kw1": torch.ones(2, 3),
|
|
"kw2": torch.ones(3, 4),
|
|
"kw3": torch.ones(2, 3),
|
|
"kw4": torch.ones(3, 4),
|
|
}
|
|
self._test_export_same_as_eager(kw_func, args, kwargs)
|
|
|
|
def test_unbacked_slice(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, scores, score_thr, topk: torch.Tensor, results=None):
|
|
valid_mask = scores > score_thr
|
|
scores = scores[valid_mask]
|
|
valid_idxs = torch.nonzero(valid_mask).to(scores.device)
|
|
|
|
num_topk = torch.minimum(topk, torch.tensor(valid_idxs.shape[0])).item()
|
|
torch._check_is_size(num_topk)
|
|
torch._check(scores.shape[0] >= num_topk)
|
|
scores, idxs = scores.sort(descending=True)
|
|
scores = scores[:num_topk]
|
|
topk_idxs = valid_idxs[idxs[:num_topk]]
|
|
keep_idxs, labels = topk_idxs.unbind(dim=1)
|
|
|
|
return scores, labels, keep_idxs
|
|
|
|
score = torch.tensor(
|
|
[[0.1, 0.3, 0.2], [0.12, 0.7, 0.9], [0.02, 0.8, 0.08], [0.4, 0.1, 0.08]]
|
|
)
|
|
bbox_pred = torch.tensor([[0.2, 0.3], [0.4, 0.7], [0.1, 0.1], [0.5, 0.1]])
|
|
score_thr = 0.15
|
|
nms_pre = torch.tensor(4)
|
|
inputs = (score, score_thr, nms_pre, dict(bbox_pred=bbox_pred))
|
|
|
|
ep = torch.export.export(M(), inputs)
|
|
orig_res = M()(*inputs)
|
|
ep_res = ep.module()(*inputs)
|
|
self.assertTrue(torch.allclose(orig_res[0], ep_res[0]))
|
|
self.assertTrue(torch.allclose(orig_res[1], ep_res[1]))
|
|
self.assertTrue(torch.allclose(orig_res[2], ep_res[2]))
|
|
|
|
def test_unflatten_asserts(self):
|
|
# TODO: strict-export fails
|
|
class M1(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
b = x.item()
|
|
|
|
torch._check_is_size(b)
|
|
torch._check(b < y.size(0))
|
|
return y[:b]
|
|
|
|
class M3(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
b = x.item()
|
|
|
|
torch._check_is_size(b)
|
|
torch._check(b < y.size(0) * 2)
|
|
return y[:b]
|
|
|
|
class M2(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.m1 = M1()
|
|
self.m3 = M3()
|
|
|
|
def forward(self, x, y):
|
|
return self.m1(x, y) + self.m3(x, y)
|
|
|
|
inputs = (torch.tensor(3), torch.randn(10))
|
|
|
|
ep = torch.export.export(
|
|
M2(), inputs, dynamic_shapes={"x": None, "y": (Dim("moo"),)}, strict=False
|
|
)
|
|
orig_res = M2()(*inputs)
|
|
ep_res = ep.module()(*inputs)
|
|
self.assertTrue(torch.allclose(orig_res[0], ep_res[0]))
|
|
self.assertTrue(torch.allclose(orig_res[1], ep_res[1]))
|
|
self.assertTrue(torch.allclose(orig_res[2], ep_res[2]))
|
|
|
|
unflattened = torch.export.unflatten(ep)
|
|
ep_res = unflattened(*inputs)
|
|
self.assertTrue(torch.allclose(orig_res[0], ep_res[0]))
|
|
self.assertTrue(torch.allclose(orig_res[1], ep_res[1]))
|
|
self.assertTrue(torch.allclose(orig_res[2], ep_res[2]))
|
|
|
|
def test_export_func_with_var_keyword_pytree_args(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, arg1, arg2, *args, kw1, kw2, **kwargs):
|
|
return (
|
|
arg1 + arg2[0][0] + args[0] + kw1[0] + kwargs["kw3"][0],
|
|
arg2[1] + args[1] + kw2 + kwargs["kw4"],
|
|
)
|
|
|
|
kw_func = Module()
|
|
args = (
|
|
torch.ones(2, 3),
|
|
[(torch.ones(2, 3),), torch.ones(3, 4)],
|
|
torch.ones(2, 3),
|
|
torch.ones(3, 4),
|
|
)
|
|
kwargs = {
|
|
"kw1": (torch.ones(2, 3),),
|
|
"kw2": torch.ones(3, 4),
|
|
"kw3": (torch.ones(2, 3), torch.ones(3, 4)),
|
|
"kw4": torch.ones(3, 4),
|
|
}
|
|
self._test_export_same_as_eager(kw_func, args, kwargs)
|
|
|
|
@testing.expectedFailureSerDer # we don't save placeholder metadata
|
|
@testing.expectedFailureNonStrict
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict # source_fn_stack failure
|
|
def test_linear_conv(self):
|
|
class MyLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.randn(20, 98)
|
|
self.bias = torch.randn(20)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.linear(x, self.weight, self.bias)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(16, 33, 3)
|
|
self.linear = MyLinear()
|
|
|
|
def forward(self, x):
|
|
x_conv = self.conv(x)
|
|
x_linear = self.linear(x_conv)
|
|
return x_linear.cos()
|
|
|
|
ep = export(Foo(), (torch.randn(20, 16, 50, 100),))
|
|
for node in ep.graph.nodes:
|
|
if (
|
|
node.op == "placeholder"
|
|
and node.name in ep.graph_signature.inputs_to_buffers
|
|
or node.name in ep.graph_signature.inputs_to_parameters
|
|
):
|
|
self.assertTrue("source_fn_stack" in node.meta)
|
|
|
|
def test_export_api_with_dynamic_shapes(self):
|
|
from torch.export import Dim, dims, export
|
|
|
|
# pass dynamic shapes of inputs [args]
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return torch.matmul(x, y)
|
|
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4))
|
|
batch = Dim("batch")
|
|
efoo = export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={k: {0: batch} for k in ["x", "y"]},
|
|
)
|
|
self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape)
|
|
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3),)
|
|
kwinputs = {"y": torch.randn(10, 3, 4)}
|
|
batch = Dim("batch")
|
|
efoo = export(
|
|
foo, inputs, kwinputs, dynamic_shapes={k: {0: batch} for k in ["x", "y"]}
|
|
)
|
|
self.assertEqual(
|
|
efoo.module()(*inputs, **kwinputs).shape, foo(*inputs, **kwinputs).shape
|
|
)
|
|
|
|
# pass dynamic shapes of inputs [partial, error]
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3),)
|
|
kwinputs = {"y": torch.randn(10, 3, 4)}
|
|
batch = Dim("batch")
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
(
|
|
"Constraints violated \\(batch\\)!(.*\n)*.*"
|
|
"batch was inferred to be a constant(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"batch = 10"
|
|
),
|
|
):
|
|
export(
|
|
foo,
|
|
inputs,
|
|
kwinputs,
|
|
dynamic_shapes={"x": {0: batch}, "y": None},
|
|
)
|
|
|
|
# pass dynamic shapes of inputs [module]
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4))
|
|
batch = Dim("batch")
|
|
efoo = export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={"x": {0: batch}, "y": {0: batch}},
|
|
)
|
|
self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape)
|
|
|
|
# pass dynamic shapes of inputs [bounds, mostly shared]
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 3, 3), torch.randn(10, 3, 3))
|
|
batch = Dim("batch", min=8, max=64)
|
|
size = Dim("size")
|
|
efoo = export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={
|
|
"x": (batch, size, size),
|
|
"y": (batch, size, size),
|
|
},
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
str(node.meta["val"].shape)
|
|
for node in efoo.graph_module.graph.nodes
|
|
if node.op == "placeholder"
|
|
],
|
|
["torch.Size([s0, s1, s1])", "torch.Size([s0, s1, s1])"],
|
|
)
|
|
self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape)
|
|
|
|
# pass dynamic shapes of inputs [multiple, mostly distinct]
|
|
inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4))
|
|
batch, M, K, N = dims("batch", "M", "K", "N")
|
|
efoo = export(
|
|
Foo(),
|
|
inputs,
|
|
dynamic_shapes={"x": (batch, M, K), "y": (batch, K, N)},
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
str(node.meta["val"].shape)
|
|
for node in efoo.graph_module.graph.nodes
|
|
if node.op == "placeholder"
|
|
],
|
|
["torch.Size([s0, s1, s2])", "torch.Size([s0, s2, s5])"],
|
|
)
|
|
self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape)
|
|
|
|
# pass dynamic shapes of inputs [dict]
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return torch.matmul(inputs["x"], inputs["y"])
|
|
|
|
foo = Foo()
|
|
inputs = ({"x": torch.randn(10, 2, 3), "y": torch.randn(10, 3, 4)},)
|
|
batch = Dim("batch")
|
|
efoo = export(
|
|
foo, inputs, dynamic_shapes={"inputs": {k: {0: batch} for k in ["x", "y"]}}
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
str(node.meta["val"].shape)
|
|
for node in efoo.graph_module.graph.nodes
|
|
if node.op == "placeholder"
|
|
],
|
|
["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"],
|
|
)
|
|
self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape)
|
|
|
|
# pass dynamic shapes of inputs [list]
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return torch.matmul(inputs[0], inputs[1])
|
|
|
|
foo = Foo()
|
|
inputs = ([torch.randn(10, 2, 3), torch.randn(10, 3, 4)],)
|
|
batch = Dim("batch")
|
|
efoo = export(
|
|
foo, inputs, dynamic_shapes={"inputs": [{0: batch} for _ in range(2)]}
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
str(node.meta["val"].shape)
|
|
for node in efoo.graph_module.graph.nodes
|
|
if node.op == "placeholder"
|
|
],
|
|
["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"],
|
|
)
|
|
self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape)
|
|
|
|
# pass dynamic shapes of inputs [dataclass]
|
|
|
|
# TODO(avik): This part of the test should have failed both serde and retracing
|
|
# but these failures are hidden because of the local import of `export` in this test.
|
|
# The serde failure is benign, and easily avoided by moving the dataclass definition
|
|
# to the top-level. OTOH the retracing failure needs further investigation.
|
|
@dataclass
|
|
class DataClass:
|
|
a: Tensor
|
|
b: Tensor
|
|
|
|
register_dataclass_as_pytree_node(
|
|
DataClass,
|
|
serialized_type_name="test_export_api_with_dynamic_shapes.DataClass",
|
|
)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return torch.matmul(inputs.a, inputs.b)
|
|
|
|
foo = Foo()
|
|
inputs = (DataClass(a=torch.randn(10, 2, 3), b=torch.randn(10, 3, 4)),)
|
|
batch = Dim("batch")
|
|
efoo = export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={"inputs": [{0: batch}, {0: batch}]},
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
str(node.meta["val"].shape)
|
|
for node in efoo.graph_module.graph.nodes
|
|
if node.op == "placeholder"
|
|
],
|
|
["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"],
|
|
)
|
|
|
|
# pass dynamic shapes of inputs [pytree-registered classes]
|
|
if HAS_TORCHREC:
|
|
# skipping tests if torchrec not available
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, kjt) -> torch.Tensor:
|
|
return kjt.values() + 0, kjt.offsets() + 0
|
|
|
|
foo = Foo()
|
|
kjt = KeyedJaggedTensor(
|
|
values=torch.Tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]),
|
|
keys=["index_0", "index_1"],
|
|
lengths=torch.IntTensor([0, 2, 0, 1, 1, 1, 0, 3]),
|
|
offsets=torch.IntTensor([0, 0, 2, 2, 3, 4, 5, 5, 8]),
|
|
)
|
|
inputs = (kjt,)
|
|
dim = Dim("dim")
|
|
dim_plus_one = Dim("dim_plus_one")
|
|
efoo = torch.export.export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={"kjt": [{0: dim}, None, {0: dim}, {0: dim_plus_one}]},
|
|
)
|
|
self.assertEqual(
|
|
[out.shape for out in efoo.module()(*inputs)],
|
|
[out.shape for out in foo(*inputs)],
|
|
)
|
|
|
|
# pass dynamic shapes of inputs [distinct, error]
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return torch.matmul(x, y)
|
|
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4))
|
|
batch, M, K1, K2, N = dims("batch", "M", "K1", "K2", "N")
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
(
|
|
"Constraints violated \\(K2\\)!(.*\n)*.*"
|
|
"K2.*and.*K1.*must always be equal(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"K2 = K1"
|
|
),
|
|
):
|
|
export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={"x": (batch, M, K1), "y": (batch, K2, N)},
|
|
)
|
|
|
|
# pass dynamic shapes of inputs [specialized, error]
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4))
|
|
batch, M, K1, N = dims("batch", "M", "K1", "N")
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
(
|
|
"Constraints violated \\(K1\\)!(.*\n)*.*"
|
|
"K1 was inferred to be a constant(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"K1 = 3"
|
|
),
|
|
):
|
|
export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={"x": (batch, M, K1), "y": (batch, None, N)},
|
|
)
|
|
|
|
# pass dynamic shapes of inputs [guards, error]
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
if x.shape[0] < 16 and y.shape[1] % 3 == 0:
|
|
return torch.matmul(x, y)
|
|
else:
|
|
return x + y
|
|
|
|
foo = Foo()
|
|
inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4))
|
|
batch, M, K, N = dims("batch", "M", "K", "N")
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
(
|
|
"Constraints violated.*!(.*\n)*.*"
|
|
"Not all values of K.*satisfy the generated guard(.*\n)*.*"
|
|
"Not all values of batch.*satisfy the generated guard(.*\n)*.*"
|
|
"Suggested fixes:(.*\n)*.*"
|
|
"batch = Dim\\('batch', max=15\\)(.*\n)*.*"
|
|
"K = 3\\*_K"
|
|
),
|
|
):
|
|
export(
|
|
foo,
|
|
inputs,
|
|
dynamic_shapes={"x": (batch, M, K), "y": (batch, K, N)},
|
|
)
|
|
|
|
def test_suggested_fixes_new_roots(self):
|
|
from torch.export import dims
|
|
|
|
# suggested fixes should introduce new root dim for modulo guard
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
# dy = 3 * _dx
|
|
# dx = 3 * _dx - 1
|
|
# dz = 3 * _dx + 2
|
|
# suggested fixes results will look something like
|
|
# {"dx": {"eq": 3*_dx-1, "min": 5, "max": 36}, "dy": {"eq": dx+1}, ...}
|
|
if x.shape[0] >= 5 and x.shape[0] <= 36 and y.shape[0] % 3 == 0:
|
|
return x + y[1:] + z[3:]
|
|
|
|
foo = Foo()
|
|
inputs = (
|
|
torch.randn(
|
|
11,
|
|
),
|
|
torch.randn(
|
|
12,
|
|
),
|
|
torch.randn(
|
|
14,
|
|
),
|
|
)
|
|
dx, dy, dz = dims("dx", "dy", "dz")
|
|
dynamic_shapes = {
|
|
"x": (dx,),
|
|
"y": (dy,),
|
|
"z": (dz,),
|
|
}
|
|
with self.assertRaisesRegex( # figure out regex later
|
|
torch._dynamo.exc.UserError,
|
|
(
|
|
"Constraints violated.*!(.*\n)*.*"
|
|
"Suggested fixes(.*\n)*.*"
|
|
"_dx = Dim\(\\'_dx\\', max=12\)(.*\n)*.*"
|
|
"dx = 3\*_dx - 1(.*\n)*.*"
|
|
"dy = 3\*_dx(.*\n)*.*"
|
|
"dz = 3\*_dx \+ 2"
|
|
),
|
|
):
|
|
export(Foo(), inputs, dynamic_shapes=dynamic_shapes)
|
|
# retry export
|
|
_dx = Dim("_dx", min=2, max=12)
|
|
dynamic_shapes = {"x": (3 * _dx - 1,), "y": (3 * _dx,), "z": (3 * _dx + 2,)}
|
|
export(Foo(), inputs, dynamic_shapes=dynamic_shapes)
|
|
|
|
def test_refine_dynamic_shapes_from_suggested_fixes(self):
|
|
from torch.export.dynamic_shapes import (
|
|
refine_dynamic_shapes_from_suggested_fixes,
|
|
)
|
|
|
|
def helper(model, inputs, dynamic_shapes):
|
|
# export, fail, parse & refine suggested fixes, re-export
|
|
try:
|
|
export(Foo(), inps, dynamic_shapes=dynamic_shapes)
|
|
raise Exception("should have raised constraint violation error")
|
|
except torch._dynamo.exc.UserError as exc:
|
|
new_shapes = refine_dynamic_shapes_from_suggested_fixes(
|
|
exc.msg, dynamic_shapes
|
|
)
|
|
export(Foo(), inps, dynamic_shapes=new_shapes)
|
|
return new_shapes
|
|
|
|
# specialize dims + derived dims
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
x0 = x + y[1:] + z[2:]
|
|
x1 = x @ torch.randn(4, 4)
|
|
return x0, x1
|
|
|
|
inps = (
|
|
torch.randn(
|
|
4,
|
|
),
|
|
torch.randn(
|
|
5,
|
|
),
|
|
torch.randn(
|
|
6,
|
|
),
|
|
)
|
|
dx = Dim("dx", max=16)
|
|
dynamic_shapes = {"x": (dx,), "y": (dx + 1,), "z": (dx + 2,)}
|
|
new_shapes = helper(Foo(), inps, dynamic_shapes)
|
|
self.assertEqual(new_shapes["x"][0], 4)
|
|
self.assertEqual(new_shapes["z"][0], 6)
|
|
|
|
# refine lower, upper bound
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
if x.shape[0] >= 6 and y.shape[0] <= 16:
|
|
return x * 2.0, y + 1
|
|
|
|
inps = (torch.randn(16), torch.randn(12))
|
|
dynamic_shapes = {"x": (Dim("dx"),), "y": (Dim("dy"),)}
|
|
new_shapes = helper(Foo(), inps, dynamic_shapes)
|
|
self.assertEqual(new_shapes["x"][0].min, 6)
|
|
self.assertEqual(new_shapes["y"][0].max, 16)
|
|
|
|
# divisiblity, will introduce new root
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x):
|
|
if x.shape[0] >= 9:
|
|
return x.reshape([-1, 3])
|
|
|
|
inps = (
|
|
torch.randn(
|
|
15,
|
|
),
|
|
)
|
|
dynamic_shapes = ((Dim("dx"),),)
|
|
new_shapes = helper(Foo(), inps, dynamic_shapes)
|
|
dim = new_shapes[0][0]
|
|
root = dim.root
|
|
self.assertEqual(dim.fn(2), 6)
|
|
self.assertEqual(root.min, 3)
|
|
|
|
# turn dim into derived dim/relation
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x + y[4:]
|
|
|
|
inps = (torch.randn(6, 4), torch.randn(10, 4))
|
|
dynamic_shapes = {
|
|
"x": (Dim("dx0"), Dim("dx1")),
|
|
"y": (Dim("dy0"), Dim("dy1")),
|
|
}
|
|
new_shapes = helper(Foo(), inps, dynamic_shapes)
|
|
self.assertEqual(new_shapes["x"][0], new_shapes["y"][0].root) # dy0 = dx0 + 4
|
|
self.assertEqual(new_shapes["y"][0].fn(5), 9)
|
|
self.assertEqual(new_shapes["x"][1], new_shapes["y"][1]) # dx1 = dy1
|
|
|
|
# nested dynamic shapes spec
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
x0 = x[0]["data"] + x[1] + x[2][2:]
|
|
x1 = y["a"] @ torch.randn(4, 4)
|
|
x2 = y["b"] @ torch.randn(6, 6)
|
|
return x0, x1, x2
|
|
|
|
inps = (
|
|
[
|
|
{"data": torch.randn(4, 4)},
|
|
torch.randn(4, 4),
|
|
torch.randn(6, 4),
|
|
],
|
|
{
|
|
"a": torch.randn(8, 4),
|
|
"b": torch.randn(9, 6),
|
|
},
|
|
)
|
|
dynamic_shapes = {
|
|
"x": [
|
|
{"data": (Dim("dx00"), Dim("dx01"))},
|
|
(Dim("dx10"), Dim("dx11")),
|
|
(Dim("dx20"), Dim("dx21")),
|
|
],
|
|
"y": {
|
|
"a": (Dim("dya0"), Dim("dya1")),
|
|
"b": (Dim("dyb0"), Dim("dyb1")),
|
|
},
|
|
}
|
|
new_shapes = helper(Foo(), inps, dynamic_shapes)
|
|
self.assertEqual(
|
|
new_shapes["x"][0]["data"][0], new_shapes["x"][1][0]
|
|
) # dx10 = dx00
|
|
self.assertEqual(
|
|
new_shapes["x"][2][0].root, new_shapes["x"][0]["data"][0]
|
|
) # dx20 = dx00 + 2
|
|
self.assertEqual(new_shapes["x"][2][0].fn(10), 12)
|
|
self.assertEqual(
|
|
new_shapes["x"][0]["data"][1], new_shapes["x"][1][1]
|
|
) # dx11 = dx01
|
|
self.assertEqual(new_shapes["y"]["a"][1], 4)
|
|
self.assertEqual(new_shapes["y"]["b"][1], 6)
|
|
self.assertEqual(new_shapes["y"]["b"][0].__name__, "dyb0") # unchanged
|
|
|
|
def test_dynamic_shapes_spec_with_pytree(self):
|
|
from torch.export import Dim, export
|
|
from torch.utils._pytree import tree_map
|
|
|
|
inputs = {
|
|
"tensor": torch.randn(3),
|
|
"dict_of_tensors": {k: torch.randn(3) for k in ["A", "B", "C", "D"]},
|
|
"list_of_tensors": [torch.randn(3) for _ in range(4)],
|
|
}
|
|
|
|
batch = Dim("batch")
|
|
# uniformly specify dynamic shapes for all inputs
|
|
spec = tree_map(lambda x: {0: batch}, inputs)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return (
|
|
inputs["tensor"]
|
|
+ inputs["dict_of_tensors"]["A"]
|
|
+ inputs["list_of_tensors"][0]
|
|
)
|
|
|
|
ep = export(Foo(), (inputs,), dynamic_shapes={"inputs": spec})
|
|
input_shapes = [
|
|
str(node.meta["val"].shape)
|
|
for node in ep.graph_module.graph.nodes
|
|
if node.op == "placeholder"
|
|
]
|
|
self.assertEqual(len(input_shapes), 9)
|
|
self.assertTrue(all(shape == "torch.Size([s0])" for shape in input_shapes))
|
|
|
|
def test_error_does_not_reference_eager_fallback(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = x.nonzero()
|
|
z = y.shape[0]
|
|
if z > 2:
|
|
return x.cos()
|
|
else:
|
|
return x.sin()
|
|
|
|
fn_ddo = Module()
|
|
if is_non_strict_test(self._testMethodName):
|
|
error = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
|
|
error_msg = r"Could not guard on data-dependent expression"
|
|
else:
|
|
error = torchdynamo.exc.UserError
|
|
error_msg = r"^(?!.*fall back to eager).*"
|
|
with self.assertRaisesRegex(error, error_msg):
|
|
_ = export(fn_ddo, (torch.tensor([2, 3, 5]),))
|
|
|
|
def test_pytree_register_data_class(self):
|
|
@dataclass
|
|
class MyDataClass:
|
|
x: int
|
|
y: int
|
|
z: int = None
|
|
|
|
dt = MyDataClass(x=3, y=4)
|
|
flat, spec = tree_flatten(dt)
|
|
self.assertTrue(spec, LeafSpec())
|
|
self.assertTrue(len(flat) == 1)
|
|
|
|
register_dataclass_as_pytree_node(
|
|
MyDataClass,
|
|
serialized_type_name="test_pytree_register_data_class.MyDataClass",
|
|
)
|
|
|
|
flat, spec = tree_flatten(dt)
|
|
self.assertEqual(
|
|
spec,
|
|
TreeSpec(MyDataClass, [["x", "y"], ["z"]], [LeafSpec(), LeafSpec()]),
|
|
)
|
|
self.assertEqual(flat, [3, 4])
|
|
|
|
orig_dt = tree_unflatten(flat, spec)
|
|
self.assertTrue(isinstance(orig_dt, MyDataClass))
|
|
self.assertEqual(orig_dt.x, 3)
|
|
self.assertEqual(orig_dt.y, 4)
|
|
self.assertEqual(orig_dt.z, None)
|
|
|
|
roundtrip_spec = treespec_loads(treespec_dumps(spec))
|
|
self.assertEqual(roundtrip_spec, spec)
|
|
|
|
@dataclass
|
|
class MyOtherDataClass: # the pytree registration don't allow registering the same class twice
|
|
x: int
|
|
y: int
|
|
z: int = None
|
|
|
|
# Override the registration with keep none fields
|
|
register_dataclass_as_pytree_node(
|
|
MyOtherDataClass,
|
|
return_none_fields=True,
|
|
serialized_type_name="test_pytree_regster_data_class.MyOtherDataClass",
|
|
)
|
|
|
|
dt = MyOtherDataClass(x=3, y=4)
|
|
flat, spec = tree_flatten(dt)
|
|
self.assertEqual(
|
|
spec,
|
|
TreeSpec(
|
|
MyOtherDataClass,
|
|
[["x", "y", "z"], []],
|
|
[LeafSpec(), LeafSpec(), LeafSpec()],
|
|
),
|
|
)
|
|
self.assertEqual(flat, [3, 4, None])
|
|
|
|
orig_dt = tree_unflatten(flat, spec)
|
|
self.assertTrue(isinstance(orig_dt, MyOtherDataClass))
|
|
self.assertEqual(orig_dt.x, 3)
|
|
self.assertEqual(orig_dt.y, 4)
|
|
self.assertEqual(orig_dt.z, None)
|
|
|
|
roundtrip_spec = treespec_loads(treespec_dumps(spec))
|
|
self.assertEqual(roundtrip_spec, spec)
|
|
|
|
def test_pytree_register_nested_data_class(self):
|
|
@dataclass
|
|
class Inner:
|
|
x: int
|
|
y: int
|
|
|
|
@dataclass
|
|
class Outer:
|
|
xy: Inner
|
|
ab: Inner
|
|
|
|
xy = Inner(1, 2)
|
|
ab = Inner(3, 4)
|
|
dt = Outer(xy, ab)
|
|
inp = {"dt1": (dt, ({},)), "dt2": ((torch.ones(1),), dt)}
|
|
|
|
register_dataclass_as_pytree_node(
|
|
Inner, serialized_type_name="test_pytree_register_nested_data_class.Inner"
|
|
)
|
|
register_dataclass_as_pytree_node(
|
|
Outer, serialized_type_name="test_pytree_register_nested_data_class.Outer"
|
|
)
|
|
|
|
flat, spec = tree_flatten(inp)
|
|
self.assertEqual(flat, [1, 2, 3, 4, torch.ones(1), 1, 2, 3, 4])
|
|
|
|
unflat = tree_unflatten(flat, spec)
|
|
self.assertEqual(unflat, inp)
|
|
|
|
roundtrip_spec = treespec_loads(treespec_dumps(spec))
|
|
self.assertEqual(roundtrip_spec, spec)
|
|
|
|
def test_param_util(self):
|
|
class Basic(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.lin = torch.nn.Linear(10, 1)
|
|
|
|
def forward(self, x):
|
|
return self.lin(x)
|
|
|
|
ep = export(Basic(), (torch.randn(5, 10),))
|
|
num_params = 0
|
|
params = []
|
|
for node in ep.graph.nodes:
|
|
if is_param(ep, node):
|
|
num_params += 1
|
|
params.append(get_param(ep, node))
|
|
self.assertEqual(num_params, 2)
|
|
self.assertEqual(params[0].shape, [1, 10]) # weight
|
|
self.assertEqual(params[1].shape, [1]) # bias
|
|
|
|
def test_buffer_util(self):
|
|
ep = export(
|
|
torch.nn.BatchNorm2d(100, affine=False), (torch.ones(20, 100, 35, 45),)
|
|
)
|
|
num_buffer = 0
|
|
buffer = []
|
|
|
|
for node in ep.graph.nodes:
|
|
if is_buffer(ep, node):
|
|
num_buffer += 1
|
|
buffer.append(get_buffer(ep, node))
|
|
self.assertEqual(num_buffer, 3)
|
|
|
|
self.assertEqual(buffer[0].shape, torch.Size([100])) # running_mean
|
|
self.assertEqual(buffer[1].shape, torch.Size([100])) # running_var
|
|
self.assertEqual(buffer[2].shape, torch.Size([])) # num_batches_tracked
|
|
|
|
def test_export_dynamo_config(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.lstm = torch.nn.LSTM(input_size=4, hidden_size=5, num_layers=1)
|
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
|
return self.lstm(inputs)
|
|
|
|
config = DEFAULT_EXPORT_DYNAMO_CONFIG
|
|
mod = MyModule()
|
|
|
|
@contextmanager
|
|
def _patch_config(kwargs):
|
|
orig_config_dict = dataclasses.asdict(config)
|
|
|
|
try:
|
|
for k, v in kwargs.items():
|
|
setattr(config, k, v)
|
|
yield
|
|
finally:
|
|
for k, v in orig_config_dict.items():
|
|
setattr(config, k, v)
|
|
|
|
inp = (torch.rand(5, 4),)
|
|
exported_program = export(mod, inp, strict=True)
|
|
|
|
with _patch_config({"allow_rnn": False}):
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.Unsupported,
|
|
"TorchDynamo purposely graph breaks on RNN, GRU, LSTMs",
|
|
):
|
|
_ = export(mod, inp, strict=True)
|
|
|
|
@testing.expectedFailureTrainingIRToRunDecomp # T193700396
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_device_to_static(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.to("cpu")
|
|
|
|
ep = export(Module(), (torch.tensor(1, device="cpu"),))
|
|
ops = []
|
|
for node in ep.graph.nodes:
|
|
if node.op == "call_function":
|
|
ops.append(node.target)
|
|
self.assertGreater(len(ops), 0)
|
|
for op in ops:
|
|
self.assertIn(op, (torch.ops.aten._to_copy.default,))
|
|
|
|
@testing.expectedFailureTrainingIRToRunDecomp # T193700396
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_device_to_dynamic(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.to("cpu")
|
|
|
|
ep = export(
|
|
Module(),
|
|
(torch.tensor([1, 2], device="cpu"),),
|
|
dynamic_shapes={"x": {0: Dim("i")}},
|
|
)
|
|
ops = []
|
|
for node in ep.graph.nodes:
|
|
if node.op == "call_function":
|
|
ops.append(node.target)
|
|
self.assertGreater(len(ops), 0)
|
|
for op in ops:
|
|
self.assertIn(op, (torch.ops.aten._to_copy.default,))
|
|
|
|
@testing.expectedFailureTrainingIRToRunDecomp # T193700396
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_device_to_mutation(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = x.to("cpu")
|
|
y.add_(1)
|
|
return y, x
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "cannot mutate tensors with frozen storage"
|
|
):
|
|
export(Module(), (torch.tensor(1, device="cpu"),))
|
|
|
|
@testing.expectedFailureTrainingIRToRunDecomp # T193700396
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_float_conversion(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.float()
|
|
|
|
ep = export(Module(), (torch.tensor(1, dtype=torch.float),))
|
|
ops = []
|
|
for node in ep.graph.nodes:
|
|
if node.op == "call_function":
|
|
ops.append(node.target)
|
|
self.assertGreater(len(ops), 0)
|
|
for op in ops:
|
|
self.assertIn(op, (torch.ops.aten._to_copy.default,))
|
|
|
|
@testing.expectedFailureTrainingIRToRunDecomp # T193700396
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_device_to_mutation_float(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = x.float()
|
|
y.add_(1)
|
|
return y, x
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "cannot mutate tensors with frozen storage"
|
|
):
|
|
export(Module(), (torch.tensor(1, dtype=torch.float),))
|
|
|
|
def test_module(self):
|
|
class MyLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.randn(20, 98)
|
|
self.bias = torch.randn(20)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.linear(x, self.weight, self.bias)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(16, 33, 3)
|
|
self.linear = MyLinear()
|
|
|
|
def forward(self, x):
|
|
a, b = x
|
|
a_conv = self.conv(a)
|
|
a_linear = self.linear(a_conv)
|
|
b_conv = self.conv(b)
|
|
b_linear = self.linear(b_conv)
|
|
return (
|
|
a_linear.cos() + b_linear.sin(),
|
|
a_linear.sin() + b_linear.cos(),
|
|
)
|
|
|
|
inp_container = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),)
|
|
|
|
ep = export(Foo(), inp_container)
|
|
ep_rexported = export(ep.module(), inp_container)
|
|
|
|
inp_test = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(*inp_test)[0], ep_rexported.module()(*inp_test)[0]
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(*inp_test)[1], ep_rexported.module()(*inp_test)[1]
|
|
)
|
|
)
|
|
|
|
def test_module_with_dict_container_inp_out(self):
|
|
class MyLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.randn(20, 98)
|
|
self.bias = torch.randn(20)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.linear(x, self.weight, self.bias)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(16, 33, 3)
|
|
self.linear = MyLinear()
|
|
|
|
def forward(self, x):
|
|
a1, a2 = x["a"]
|
|
b = x["b"]
|
|
a1_conv = self.conv(a1)
|
|
a1_linear = self.linear(a1_conv)
|
|
a2_conv = self.conv(a2)
|
|
a2_linear = self.linear(a2_conv)
|
|
b_conv = self.conv(b)
|
|
b_linear = self.linear(b_conv)
|
|
return {
|
|
"a": a1_linear.cos() + b_linear.sin(),
|
|
"b": a2_linear.sin() + b_linear.cos(),
|
|
}
|
|
|
|
inp_container = (
|
|
{
|
|
"a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),
|
|
"b": torch.randn(20, 16, 50, 100),
|
|
},
|
|
)
|
|
|
|
ep = export(Foo(), inp_container)
|
|
ep_rexported = export(ep.module(), inp_container)
|
|
|
|
inp_test = (
|
|
{
|
|
"a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),
|
|
"b": torch.randn(20, 16, 50, 100),
|
|
},
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(*inp_test)["a"], ep_rexported.module()(*inp_test)["a"]
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(*inp_test)["b"], ep_rexported.module()(*inp_test)["b"]
|
|
)
|
|
)
|
|
|
|
def test_args_type_checked(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + 1
|
|
|
|
inp = torch.rand(2, 2)
|
|
with self.assertRaisesRegex(torch._dynamo.exc.UserError, "to be a tuple"):
|
|
# Intentionally not wrapping `inp` in a tuple to trigger the error
|
|
_ = export(M(), inp)
|
|
|
|
def test_decomp_batch_norm_functional_predispatch(self):
|
|
class ConvBatchnorm(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(1, 3, 1, 1)
|
|
self.bn = torch.nn.BatchNorm2d(3)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return (x,)
|
|
|
|
mod = ConvBatchnorm()
|
|
mod.eval()
|
|
inp = torch.randn(1, 1, 3, 3)
|
|
|
|
gm = torch.export._trace._export(mod, (inp,), pre_dispatch=True).module()
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
|
|
conv_weight = self.conv.weight
|
|
conv_bias = self.conv.bias
|
|
bn_weight = self.bn.weight
|
|
bn_bias = self.bn.bias
|
|
bn_running_mean = self.bn.running_mean
|
|
bn_running_var = self.bn.running_var
|
|
bn_num_batches_tracked = self.bn.num_batches_tracked; bn_num_batches_tracked = None
|
|
conv2d = torch.ops.aten.conv2d.default(x, conv_weight, conv_bias); x = conv_weight = conv_bias = None
|
|
_native_batch_norm_legit_no_training = torch.ops.aten._native_batch_norm_legit_no_training.default(conv2d, bn_weight, bn_bias, bn_running_mean, bn_running_var, 0.1, 1e-05); conv2d = bn_weight = bn_bias = bn_running_mean = bn_running_var = None
|
|
getitem = _native_batch_norm_legit_no_training[0]; _native_batch_norm_legit_no_training = None
|
|
return pytree.tree_unflatten((getitem,), self._out_spec)""",
|
|
)
|
|
|
|
mod.train()
|
|
gm_train = _export(mod, (inp,), pre_dispatch=True).module()
|
|
self.assertExpectedInline(
|
|
str(gm_train.code).strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
|
|
conv_weight = self.conv.weight
|
|
conv_bias = self.conv.bias
|
|
bn_weight = self.bn.weight
|
|
bn_bias = self.bn.bias
|
|
bn_running_mean = self.bn.running_mean
|
|
bn_running_var = self.bn.running_var
|
|
bn_num_batches_tracked = self.bn.num_batches_tracked
|
|
conv2d = torch.ops.aten.conv2d.default(x, conv_weight, conv_bias); x = conv_weight = conv_bias = None
|
|
add = torch.ops.aten.add.Tensor(bn_num_batches_tracked, 1)
|
|
_native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(conv2d, bn_weight, bn_bias, bn_running_mean, bn_running_var, True, 0.1, 1e-05); conv2d = bn_weight = bn_bias = None
|
|
getitem = _native_batch_norm_legit_functional[0]
|
|
getitem_3 = _native_batch_norm_legit_functional[3]
|
|
getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None
|
|
copy__default = torch.ops.aten.copy_.default(bn_running_mean, getitem_3); bn_running_mean = getitem_3 = copy__default = None
|
|
copy__default_1 = torch.ops.aten.copy_.default(bn_running_var, getitem_4); bn_running_var = getitem_4 = copy__default_1 = None
|
|
copy__default_2 = torch.ops.aten.copy_.default(bn_num_batches_tracked, add); bn_num_batches_tracked = add = copy__default_2 = None
|
|
return pytree.tree_unflatten((getitem,), self._out_spec)""",
|
|
)
|
|
|
|
def test_constrain_size_in_eager(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.max().item()
|
|
torch._check_is_size(n)
|
|
return y + n
|
|
|
|
fn = Module()
|
|
ep = export(
|
|
fn,
|
|
(torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))),
|
|
)
|
|
test_inp = (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3)))
|
|
self.assertTrue(torch.allclose(ep.module()(*test_inp), fn(*test_inp)))
|
|
|
|
def test_constrain_size_with_constrain_value(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.max().item()
|
|
torch._check(n >= 2)
|
|
torch._check(n <= 10)
|
|
torch._check_is_size(n)
|
|
return y + n
|
|
|
|
fn = Module()
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Expected cond to be True, but got False"
|
|
):
|
|
_ = fn(torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3)))
|
|
|
|
ep = export(
|
|
fn,
|
|
(torch.randint(3, 4, (2, 2)), torch.randint(3, 5, (2, 3))),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Runtime assertion failed for expression u[\d+] \>\= 2"
|
|
):
|
|
test_inp = (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3)))
|
|
_ = ep.module()(*test_inp)
|
|
|
|
def test_constrain_size_with_various_cases(self):
|
|
class Module1(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.item()
|
|
torch._check_is_size(n)
|
|
torch._check(n >= 0)
|
|
return y.sum() + torch.ones(n, 5).sum()
|
|
|
|
case1 = Module1()
|
|
|
|
class Module2(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.item()
|
|
torch._check_is_size(n)
|
|
torch._check(n >= 0)
|
|
torch._check(n <= 6)
|
|
return y.sum() + torch.ones(n, 5).sum()
|
|
|
|
case2 = Module2()
|
|
|
|
class Module3(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.item()
|
|
torch._check_is_size(n)
|
|
torch._check(n >= 0)
|
|
torch._check(n <= 1)
|
|
return y.sum() + torch.ones(n, 5).sum()
|
|
|
|
case3 = Module3()
|
|
|
|
class Module4(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.item()
|
|
torch._check_is_size(n)
|
|
torch._check(n >= 2)
|
|
return y.sum() + torch.ones(n, 5).sum()
|
|
|
|
case4 = Module4()
|
|
|
|
class Module5(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.item()
|
|
torch._check_is_size(n)
|
|
torch._check(n >= 1)
|
|
return y.sum() + torch.ones(n, 5).sum()
|
|
|
|
case5 = Module5()
|
|
|
|
ep = export(case1, (torch.tensor(1), torch.ones(4, 5)))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"Expected cond to be True, but got False"
|
|
):
|
|
_ = case1(torch.tensor(-1), torch.randn(4, 5))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(torch.tensor(1), torch.ones(4, 5)),
|
|
case1(torch.tensor(1), torch.ones(4, 5)),
|
|
)
|
|
)
|
|
|
|
ep = export(case2, (torch.tensor(5), torch.randn(4, 5)))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Expected cond to be True, but got False",
|
|
):
|
|
_ = case2(torch.tensor(7), torch.randn(4, 5))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Expected cond to be True, but got False",
|
|
):
|
|
_ = case2(torch.tensor(9), torch.randn(4, 5))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(torch.tensor(5), torch.ones(4, 5)),
|
|
case2(torch.tensor(5), torch.ones(4, 5)),
|
|
)
|
|
)
|
|
|
|
_ = case3(torch.tensor(1), torch.randn(4, 5))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Expected cond to be True, but got False",
|
|
):
|
|
_ = case4(torch.tensor(1), torch.randn(4, 5))
|
|
|
|
ep = export(case4, (torch.tensor(5), torch.randn(4, 5)))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Expected cond to be True, but got False",
|
|
):
|
|
_ = case4(torch.tensor(1), torch.randn(4, 5))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(torch.tensor(5), torch.ones(4, 5)),
|
|
case4(torch.tensor(5), torch.ones(4, 5)),
|
|
)
|
|
)
|
|
|
|
ep = export(case5, (torch.tensor(5), torch.randn(4, 5)))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Expected cond to be True, but got False",
|
|
):
|
|
_ = case5(torch.tensor(0), torch.randn(4, 5))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(torch.tensor(5), torch.ones(4, 5)),
|
|
case5(torch.tensor(5), torch.ones(4, 5)),
|
|
)
|
|
)
|
|
|
|
def test_automatic_constrain_size(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = x.item()
|
|
return y.sum() + torch.ones(n, 5).sum()
|
|
|
|
ep = export(M(), (torch.tensor(1), torch.ones(4, 5)))
|
|
|
|
# This is because we insert sym_constrain_range in the graph now
|
|
error_msg = r"Invalid value range for -1 between"
|
|
with self.assertRaisesRegex(RuntimeError, error_msg):
|
|
_ = ep.module()(torch.tensor(-1), torch.randn(4, 5))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
ep.module()(torch.tensor(1), torch.ones(4, 5)),
|
|
M()(torch.tensor(1), torch.ones(4, 5)),
|
|
)
|
|
)
|
|
|
|
def test_constrain_decomp(self) -> None:
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.freq = torch.ones(5, 5)
|
|
|
|
def forward(self, start_pos: torch.Tensor):
|
|
pos = start_pos.item()
|
|
torch._check_is_size(pos)
|
|
torch._check(pos >= 0)
|
|
torch._check(pos <= 4)
|
|
return self.freq[pos] * self.freq[pos]
|
|
|
|
ep = torch.export.export(M(), (torch.tensor(1),))
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 2, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
decompose_ep = ep.run_decompositions()
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 2, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
def test_mixed_input(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, a, b, alpha: int):
|
|
return torch.add(a, b, alpha=alpha)
|
|
|
|
func = Module()
|
|
|
|
a = torch.rand(1, 2)
|
|
b = torch.rand(1, 2)
|
|
alpha = 10
|
|
|
|
exported = export(func, (a, b, alpha))
|
|
for node in exported.graph_module.graph.nodes:
|
|
if node.op == "placeholder":
|
|
self.assertTrue(isinstance(node.meta["val"], (Tensor, int)))
|
|
|
|
def test_export_with_inline_constraints(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
a = x.item()
|
|
torch._check(a >= 4)
|
|
torch._check(a <= 7)
|
|
return torch.empty((a, 4))
|
|
|
|
f = Module()
|
|
ep = export(f, (torch.tensor([5]),))
|
|
self.assertEqual(ep.module()(torch.tensor([6])).shape, (6, 4))
|
|
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 2, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range.default", 0, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression u[\d+] \<\= 7",
|
|
) as cm:
|
|
ep.module()(torch.tensor([30]))
|
|
|
|
def test_export_with_inline_constraints_complex(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
a = x.item()
|
|
torch._check(a >= 4)
|
|
torch._check(a <= 7)
|
|
empty = torch.empty((a, 4))
|
|
|
|
return torch.cat((empty.transpose(0, 1), torch.zeros(6, a)), 0)
|
|
|
|
f = Module()
|
|
ep = export(f, (torch.tensor([6]),))
|
|
self.assertEqual(ep.module()(torch.tensor([5])).shape, (10, 5))
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 2, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range.default", 0, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
def test_to_module_with_mutated_buffer(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.zeros(1))
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
return x.sum() + self.buf.sum()
|
|
|
|
exported = export(Foo(), (torch.ones(5, 5),))
|
|
stateful_gm = exported.module()
|
|
export_return_val = stateful_gm(torch.ones(5, 5))
|
|
eager = Foo()
|
|
eager_return_val = eager(torch.ones(5, 5))
|
|
self.assertTrue(torch.allclose(eager_return_val, export_return_val))
|
|
|
|
for name, buffer in stateful_gm.named_buffers():
|
|
self.assertTrue(torch.allclose(torch.ones(1), buffer))
|
|
|
|
changed = stateful_gm.graph.eliminate_dead_code()
|
|
self.assertFalse(changed)
|
|
self.assertTrue(
|
|
torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5)))
|
|
)
|
|
|
|
for name, buffer in stateful_gm.named_buffers():
|
|
self.assertTrue(torch.allclose(torch.tensor(2, dtype=torch.float), buffer))
|
|
|
|
def test_to_module_with_mutated_buffer_multiple(self):
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.ones(1))
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
return x.sum() + self.buf.sum()
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.zeros(1))
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
self.bar.buf.add_(2)
|
|
bar = self.bar(x)
|
|
return bar.sum() + self.buf.sum()
|
|
|
|
exported = export(Foo(), (torch.ones(5, 5),))
|
|
stateful_gm = exported.module()
|
|
export_return_val = stateful_gm(torch.ones(5, 5))
|
|
eager = Foo()
|
|
eager_return_val = eager(torch.ones(5, 5))
|
|
self.assertTrue(torch.allclose(eager_return_val, export_return_val))
|
|
|
|
for name, buffer in stateful_gm.named_buffers():
|
|
if name == "L__self___buf":
|
|
self.assertTrue(torch.allclose(torch.ones(1), buffer))
|
|
if name == "L__self___bar_buf":
|
|
self.assertTrue(
|
|
torch.allclose(torch.tensor(4, dtype=torch.float), buffer)
|
|
)
|
|
|
|
changed = stateful_gm.graph.eliminate_dead_code()
|
|
self.assertFalse(changed)
|
|
self.assertTrue(
|
|
torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5)))
|
|
)
|
|
|
|
for name, buffer in stateful_gm.named_buffers():
|
|
if name == "L__self___buf":
|
|
self.assertTrue(
|
|
torch.allclose(torch.tensor(2, dtype=torch.float), buffer)
|
|
)
|
|
if name == "L__self___bar_buf":
|
|
self.assertTrue(
|
|
torch.allclose(torch.tensor(7, dtype=torch.float), buffer)
|
|
)
|
|
|
|
def test_runtime_assert_for_prim(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x + y
|
|
|
|
foo = Foo()
|
|
tensor_inp = torch.ones(7, 5)
|
|
dim0_x = torch.export.Dim("dim0_x", min=6)
|
|
dynamic_shapes = {"x": {0: dim0_x}, "y": None}
|
|
exported = torch.export.export(
|
|
foo, (tensor_inp, 5), dynamic_shapes=dynamic_shapes
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
exported.module()(torch.ones(8, 5), 5), foo(torch.ones(8, 5), 5)
|
|
)
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
escape("Expected input at *args[1] to be equal to 5, but got 6"),
|
|
):
|
|
_ = exported.module()(torch.ones(8, 5), 6)
|
|
|
|
exported = torch.export.export(
|
|
foo, (tensor_inp, 5.0), dynamic_shapes=dynamic_shapes
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
escape("Expected input at *args[1] to be equal to 5.0, but got 6.0"),
|
|
):
|
|
_ = exported.module()(torch.ones(7, 5), 6.0)
|
|
|
|
def test_runtime_assert_for_prm_str(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, a, b, mode):
|
|
return torch.div(a, b, rounding_mode=mode)
|
|
|
|
foo = Foo()
|
|
inps = (torch.randn(4, 4), torch.randn(4), "trunc")
|
|
exported = export(foo, inps)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "to be equal to trunc, but got floor"
|
|
):
|
|
_ = exported.module()(torch.randn(4, 4), torch.randn(4), "floor")
|
|
self.assertTrue(torch.allclose(exported.module()(*inps), foo(*inps)))
|
|
|
|
def test_to_module_with_mutated_buffer_multiple_update_sub_later(self):
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.ones(1))
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
return x.sum() + self.buf.sum()
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.zeros(1))
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
bar = self.bar(x)
|
|
self.bar.buf.add_(2)
|
|
return bar.sum() + self.buf.sum()
|
|
|
|
exported = export(Foo(), (torch.ones(5, 5),))
|
|
stateful_gm = exported.module()
|
|
export_return_val = stateful_gm(torch.ones(5, 5))
|
|
eager = Foo()
|
|
eager_return_val = eager(torch.ones(5, 5))
|
|
self.assertTrue(torch.allclose(eager_return_val, export_return_val))
|
|
|
|
for name, buffer in stateful_gm.named_buffers():
|
|
if name == "L__self___buf":
|
|
self.assertTrue(torch.allclose(torch.ones(1), buffer))
|
|
if name == "L__self___bar_buf":
|
|
self.assertTrue(
|
|
torch.allclose(torch.tensor(4, dtype=torch.float), buffer)
|
|
)
|
|
|
|
changed = stateful_gm.graph.eliminate_dead_code()
|
|
self.assertFalse(changed)
|
|
self.assertTrue(
|
|
torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5)))
|
|
)
|
|
|
|
for name, buffer in stateful_gm.named_buffers():
|
|
if name == "L__self___buf":
|
|
self.assertTrue(
|
|
torch.allclose(torch.tensor(2, dtype=torch.float), buffer)
|
|
)
|
|
if name == "L__self___bar_buf":
|
|
self.assertTrue(
|
|
torch.allclose(torch.tensor(7, dtype=torch.float), buffer)
|
|
)
|
|
|
|
def test_retracable_ep(self):
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.ones(1))
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
return x.sum() + self.buf.sum()
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.zeros(1))
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
self.buf.add_(1)
|
|
bar = self.bar(x)
|
|
self.bar.buf.add_(2)
|
|
return bar.sum() + self.buf.sum()
|
|
|
|
inp = torch.ones(5, 5)
|
|
exported = torch.export.export(Foo(), (inp,))
|
|
reexported = torch.export.export(exported.module(), (inp,))
|
|
|
|
self.assertTrue(torch.allclose(Foo()(inp), reexported.module()(inp)))
|
|
|
|
dim0_x = torch.export.Dim("dim0_x")
|
|
exported = torch.export.export(Foo(), (inp,), dynamic_shapes=({0: dim0_x},))
|
|
reexported = torch.export.export(exported.module(), (inp,))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "shape\[0\] to be equal to 5, but got 7"
|
|
):
|
|
reexported.module()(torch.ones(7, 5))
|
|
|
|
reexported = torch.export.export(
|
|
exported.module(), (inp,), dynamic_shapes=({0: dim0_x},)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
Foo()(torch.ones(7, 5)), reexported.module()(torch.ones(7, 5))
|
|
)
|
|
)
|
|
|
|
# can't retrace with invalid inputs with respect to the original ExportedProgram
|
|
dim0_x_v2 = torch.export.Dim("dim0_x_v2", min=3)
|
|
exported_v2 = torch.export.export(
|
|
Foo(), (inp,), dynamic_shapes={"x": {0: dim0_x_v2}}
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
escape("Expected input at *args[0].shape[0] to be >= 3, but got 2"),
|
|
):
|
|
torch.export.export(exported_v2.module(), (torch.randn(2, 2),))
|
|
|
|
def test_export_cond_symbool_pred(self):
|
|
class A(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buffer = torch.nn.Buffer(torch.ones(6, 4))
|
|
|
|
def forward(self):
|
|
return self.buffer.cos()
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.a = A()
|
|
|
|
def forward(self, x):
|
|
def true_fn(x):
|
|
return x.cos() + self.a().sum()
|
|
|
|
def false_fn(x):
|
|
return x.sin()
|
|
|
|
return cond(x.shape[0] > 4, true_fn, false_fn, [x])
|
|
|
|
dim0 = torch.export.Dim("dim0", min=3)
|
|
inp = torch.ones(6, 4)
|
|
ep = export(Foo(), (inp,), dynamic_shapes={"x": {0: dim0}})
|
|
self.assertExpectedInline(
|
|
ep.graph_module.code.strip(),
|
|
"""\
|
|
def forward(self, b_a_buffer, x):
|
|
sym_size_int_1 = torch.ops.aten.sym_size.int(x, 0)
|
|
gt = sym_size_int_1 > 4; sym_size_int_1 = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [x, b_a_buffer]); gt = true_graph_0 = false_graph_0 = x = b_a_buffer = None
|
|
getitem = cond[0]; cond = None
|
|
return (getitem,)""",
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(ep.module()(torch.ones(6, 4)), Foo()(torch.ones(6, 4)))
|
|
)
|
|
|
|
def test_aten_lift_fresh_copy(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.ops.aten.lift_fresh_copy(x)
|
|
|
|
ep = export(M(), (torch.ones(6, 4),))
|
|
found = False
|
|
|
|
op = "torch.ops.aten.clone.default"
|
|
FileCheck().check_count(op, 1, exactly=True).run(ep.graph_module.code)
|
|
|
|
def test_cond_buffers(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.register_parameter(
|
|
"param", torch.nn.Parameter(torch.ones(2, 3), requires_grad=False)
|
|
)
|
|
self.buffer = torch.nn.Buffer(torch.ones(2, 3) + 1)
|
|
|
|
def true_fn(self, x):
|
|
return x + self.param
|
|
|
|
def false_fn(self, x):
|
|
return x + self.buffer
|
|
|
|
def forward(self, x):
|
|
return cond(x.shape[0] == 4, self.true_fn, self.false_fn, [x])
|
|
|
|
inp = torch.ones(2, 3)
|
|
ep = torch.export.export(M(), (inp,))
|
|
inp = torch.randn(2, 3)
|
|
epm = ep.module()
|
|
self.assertTrue(torch.allclose(epm(inp), M()(inp)))
|
|
|
|
for gm in epm.named_modules():
|
|
if not isinstance(gm, torch.fx.GraphModule):
|
|
continue
|
|
self.assertEqual(
|
|
len([node for node in gm.graph.nodes if node.op == "placeholder"]), 1
|
|
)
|
|
|
|
# map_fn references module outside the module hierarchy
|
|
@unittest.expectedFailure
|
|
def test_map_buffers(self):
|
|
class M1(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.register_parameter(
|
|
"param", torch.nn.Parameter(torch.tensor(5), requires_grad=False)
|
|
)
|
|
self.buffer = torch.nn.Buffer(torch.tensor(6) + 1)
|
|
|
|
m1 = M1()
|
|
|
|
def map_fn(x, y):
|
|
z = x + y + m1.param + m1.buffer
|
|
z.add_(4)
|
|
return z
|
|
|
|
class M(torch.nn.Module):
|
|
def forward(self, xs, y):
|
|
return map(map_fn, xs, y)
|
|
|
|
example_inputs = (torch.ones(3, 2), torch.tensor(3))
|
|
ep = torch.export.export(M(), example_inputs)
|
|
example_inputs = (torch.randn(3, 2), torch.tensor(3))
|
|
epm = ep.module()
|
|
self.assertTrue(torch.allclose(epm(*example_inputs), M()(*example_inputs)))
|
|
|
|
for gm in epm.named_modules():
|
|
if not isinstance(gm, torch.fx.GraphModule):
|
|
continue
|
|
self.assertEqual(
|
|
len([node for node in gm.graph.nodes if node.op == "placeholder"]), 2
|
|
)
|
|
|
|
@testing.expectedFailureSerDer # We don't preserve metadata on graph module
|
|
@testing.expectedFailureNonStrict
|
|
@testing.expectedFailureTrainingIRToRunDecompNonStrict
|
|
def test_retrace_graph_level_meta_preservation(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
if x.shape[0] > 4:
|
|
return x.cos()
|
|
return x.sin()
|
|
|
|
inp = torch.ones(7, 5)
|
|
dim0_x = torch.export.Dim("dim0_x", min=6)
|
|
exported = torch.export.export(Foo(), (inp,), dynamic_shapes={"x": {0: dim0_x}})
|
|
stateful_module = exported.module()
|
|
self.assertTrue(len(stateful_module.meta["input_shape_constraints"]), 1)
|
|
|
|
re_exported = export(stateful_module, (inp,), dynamic_shapes=({0: dim0_x},))
|
|
self.assertTrue(
|
|
len(re_exported.graph_module.meta["input_shape_constraints"]) == 1
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
exported.module()(torch.ones(7, 5)),
|
|
re_exported.module()(torch.ones(7, 5)),
|
|
)
|
|
)
|
|
|
|
re_exported_v2 = export(exported.module(), (inp,))
|
|
self.assertTrue(
|
|
len(re_exported_v2.graph_module.meta["input_shape_constraints"]) == 0
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
exported.module()(torch.ones(7, 5)),
|
|
re_exported_v2.module()(torch.ones(7, 5)),
|
|
)
|
|
)
|
|
|
|
def test_check_is_size_error(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
a = x.item()
|
|
# We cannot automatically infer a is a size here because view
|
|
# accepts -1
|
|
return torch.randn(24).view(a, 4)
|
|
|
|
f = Module()
|
|
if is_non_strict_test(self._testMethodName):
|
|
error = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
|
|
error_msg = r"Could not guard on data-dependent expression"
|
|
else:
|
|
error = torch._dynamo.exc.UserError
|
|
error_msg = (
|
|
r"Tried to use data-dependent value in the subsequent computation"
|
|
)
|
|
with self.assertRaisesRegex(error, error_msg):
|
|
_ = export(f, (torch.tensor(6),))
|
|
|
|
def test_train_eval_on_exported_preautograd_module(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
if x.shape[0] > 4:
|
|
return x.cos()
|
|
return x.sin()
|
|
|
|
graph_module = _export(Foo(), (torch.ones(7, 5),), pre_dispatch=True).module()
|
|
with self.assertRaisesRegex(
|
|
NotImplementedError, r"Calling train\(\) is not supported yet."
|
|
):
|
|
graph_module.train()
|
|
|
|
with self.assertRaisesRegex(
|
|
NotImplementedError, r"Calling eval\(\) is not supported yet."
|
|
):
|
|
graph_module.eval()
|
|
|
|
def test_lifted_constants(self) -> None:
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + torch.tensor(3)
|
|
|
|
f = Module()
|
|
ep = export(f, (torch.tensor(1),))
|
|
|
|
self.assertEqual(len(ep.graph_signature.input_specs), 2)
|
|
self.assertEqual(len(ep.constants), 1)
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.a = torch.tensor(3)
|
|
|
|
def forward(self, x):
|
|
list_tensor = [torch.tensor(3), torch.tensor(4)]
|
|
return x + self.a + list_tensor[0] + list_tensor[1]
|
|
|
|
ep = export(Foo(), (torch.tensor(1),))
|
|
|
|
self.assertEqual(len(ep.graph_signature.input_specs), 4)
|
|
self.assertEqual(len(ep.state_dict), 0)
|
|
self.assertEqual(len(ep.constants), 3)
|
|
|
|
inp = (torch.tensor(5),)
|
|
self.assertTrue(torch.allclose(ep.module()(*inp), Foo()(*inp)))
|
|
|
|
transform = ep.run_decompositions()
|
|
self.assertEqual(len(ep.graph_signature.input_specs), 4)
|
|
self.assertTrue(torch.allclose(ep.module()(*inp), transform.module()(*inp)))
|
|
|
|
def test_tensor_attribute_zero_args(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self, value):
|
|
super().__init__()
|
|
self.x = torch.tensor(value)
|
|
|
|
def forward(self):
|
|
return self.x.clone()
|
|
|
|
m = Foo([1, 2])
|
|
ep = export(m, ())
|
|
self.assertEqual(ep.graph_signature.lifted_tensor_constants, ["x"])
|
|
|
|
def test_preserve_shape_dynamism_for_unused_inputs(self):
|
|
@dataclass
|
|
class Input:
|
|
f: torch.Tensor
|
|
p: torch.Tensor
|
|
|
|
torch._export.utils.register_dataclass_as_pytree_node(
|
|
Input,
|
|
serialized_type_name="test_preserve_shape_dynamism_for_unused_inputs.Input",
|
|
)
|
|
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x: Input):
|
|
return x.f + 1
|
|
|
|
mod = Module()
|
|
example_inputs = (Input(f=torch.ones(10, 4), p=torch.zeros(10, 4)),)
|
|
ep_static = torch.export.export(mod, example_inputs)
|
|
for node in ep_static.graph.nodes:
|
|
if node.op == "placeholder":
|
|
for s in node.meta["val"].shape:
|
|
self.assertIsInstance(s, int)
|
|
|
|
dim0_x_f, dim0_x_p = torch.export.dims("dim0_x_f", "dim0_x_p")
|
|
dynamic_shapes = {"x": [{0: dim0_x_f}, {0: dim0_x_p}]}
|
|
ep_dynamic = torch.export.export(
|
|
mod, example_inputs, dynamic_shapes=dynamic_shapes
|
|
)
|
|
for node in ep_dynamic.graph.nodes:
|
|
if node.op == "placeholder":
|
|
for i, s in enumerate(node.meta["val"].shape):
|
|
if i == 0:
|
|
self.assertIsInstance(s, torch.SymInt)
|
|
else:
|
|
self.assertIsInstance(s, int)
|
|
|
|
def test_multiple_definitions_same_name_dim(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return torch.matmul(x, y)
|
|
|
|
A = torch.export.Dim("C", min=3)
|
|
B = torch.export.Dim("C", max=12)
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.UserError,
|
|
"Found different definitions Dim\\(.*min=3\\) and Dim\\(.*max=12\\) "
|
|
"for the same symbolic dimension",
|
|
):
|
|
torch.export.export(
|
|
Foo(),
|
|
(torch.randn(10, 10), torch.randn(10, 10)),
|
|
dynamic_shapes={"x": (A, B), "y": (B, A)},
|
|
)
|
|
|
|
def test_export_with_wrong_inputs(self):
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + x
|
|
|
|
exported_program = export(MyModule(), (torch.rand(2, 3),), {})
|
|
with self.assertRaisesRegex(ValueError, "Trying to flatten user inputs"):
|
|
exported_program.module()(torch.rand(2, 3), torch.rand(2, 3))
|
|
|
|
def test_export_decomps_simple(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.lin = torch.nn.Linear(10, 1)
|
|
|
|
def forward(self, x):
|
|
return self.lin(x)
|
|
|
|
inp = (torch.randn(5, 10),)
|
|
m = M()
|
|
ep = export(m, inp)
|
|
state_dict = ep.state_dict
|
|
|
|
self.assertTrue(torch.allclose(ep.module()(*inp), m(*inp)))
|
|
|
|
core_aten_ep = ep.run_decompositions()
|
|
FileCheck().check_count("torch.ops.aten.permute.default", 1, exactly=True).run(
|
|
core_aten_ep.graph_module.code
|
|
)
|
|
FileCheck().check_count("torch.ops.aten.t.default", 0, exactly=True).run(
|
|
core_aten_ep.graph_module.code
|
|
)
|
|
self.assertTrue(torch.allclose(core_aten_ep.module()(*inp), m(*inp)))
|
|
self.assertEqual(id(state_dict), id(ep.state_dict))
|
|
|
|
def test_export_decomps_dynamic(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.lin = torch.nn.Linear(10, 1)
|
|
|
|
def forward(self, x):
|
|
return self.lin(x)
|
|
|
|
inp = (torch.randn(5, 10),)
|
|
m = M()
|
|
ep = export(m, inp, dynamic_shapes={"x": {0: Dim("batch")}})
|
|
|
|
core_aten_ep = ep.run_decompositions()
|
|
|
|
input_node = [
|
|
node for node in core_aten_ep.graph.nodes if node.op == "placeholder"
|
|
][-1]
|
|
self.assertTrue(isinstance(input_node.meta["val"].shape[0], torch.SymInt))
|
|
|
|
FileCheck().check_count("torch.ops.aten.permute.default", 1, exactly=True).run(
|
|
core_aten_ep.graph_module.code
|
|
)
|
|
FileCheck().check_count("torch.ops.aten.t.default", 0, exactly=True).run(
|
|
core_aten_ep.graph_module.code
|
|
)
|
|
self.assertTrue(torch.allclose(core_aten_ep.module()(*inp), m(*inp)))
|
|
|
|
def test_nonzero_2(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.nonzero(x)
|
|
|
|
f = Module()
|
|
ep = export(f, (torch.ones(2),))
|
|
inp = torch.randn(2)
|
|
self.assertTrue(torch.allclose(ep.module()(inp), torch.nonzero(inp)))
|
|
|
|
def test_redundant_asserts(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = x.item()
|
|
torch._check_is_size(y)
|
|
return torch.zeros(y)
|
|
|
|
f = Foo()
|
|
|
|
ep = export(f, (torch.tensor([3]),))
|
|
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
ep = ep.run_decompositions()
|
|
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
def test_non_arg_name_dynamic_shapes_api(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, a, b):
|
|
return a.sum() + b.sum()
|
|
|
|
foo = Foo()
|
|
dim = torch.export.Dim("dim")
|
|
ep = torch.export.export(
|
|
foo,
|
|
(torch.randn(4, 4), torch.randn(4, 4)),
|
|
dynamic_shapes=(None, {0: dim}),
|
|
)
|
|
|
|
test_inp = (torch.randn(4, 4), torch.randn(7, 4))
|
|
self.assertEqual(ep.module()(*test_inp), foo(*test_inp))
|
|
|
|
ep_v2 = torch.export.export(
|
|
foo,
|
|
(torch.randn(4, 4), torch.randn(4, 4)),
|
|
dynamic_shapes=(None, None),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "shape\[0\] to be equal to 4, but got 7"
|
|
):
|
|
ep_v2.module()(*test_inp)
|
|
|
|
def test_constant_output(self):
|
|
class ModuleConstant(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.b = torch.randn(3, 2)
|
|
|
|
def forward(self):
|
|
return self.b
|
|
|
|
class ModuleNestedConstant(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.bff = torch.randn(3, 2)
|
|
|
|
def forward(self, x, y):
|
|
return {"prediction": (x + y, self.bff)}
|
|
|
|
mod = ModuleConstant()
|
|
ep = torch.export.export(mod, ())
|
|
self.assertEqual(ep.module()(), mod())
|
|
|
|
args = (torch.randn(3, 2), torch.randn(3, 2))
|
|
mod = ModuleNestedConstant()
|
|
ep = torch.export.export(mod, args)
|
|
self.assertEqual(ep.module()(*args), mod(*args))
|
|
|
|
def test_non_arg_name_dynamic_shapes_api_with_kwarg(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, a, b, kw1, kw2):
|
|
return a.sum() + b.sum() + kw1.sum() - kw2.sum()
|
|
|
|
foo = Foo()
|
|
dim = torch.export.Dim("dim")
|
|
dim_for_kw1 = torch.export.Dim("dim_for_kw1")
|
|
ep = torch.export.export(
|
|
foo,
|
|
(torch.randn(4, 4), torch.randn(4, 4)),
|
|
{"kw2": torch.ones(4, 4), "kw1": torch.zeros(4, 4)},
|
|
# We are specifying dynamism on the first kwarg even though user passed in
|
|
# different order
|
|
dynamic_shapes=(None, {0: dim}, {0: dim_for_kw1}, None),
|
|
)
|
|
|
|
test_inp = (torch.randn(4, 4), torch.randn(7, 4))
|
|
test_kwargs = {"kw2": torch.ones(4, 4), "kw1": torch.zeros(9, 4)}
|
|
# This should work even if the kwarg order are flipped.
|
|
self.assertEqual(
|
|
ep.module()(*test_inp, **test_kwargs), foo(*test_inp, **test_kwargs)
|
|
)
|
|
|
|
def test_non_arg_name_dynamic_shapes_api_with_container_type(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, a, b):
|
|
return a[0].sum() + a[1].sum() + b.sum()
|
|
|
|
inp_a = (torch.randn(4, 4), torch.randn(4, 4))
|
|
inp_b = torch.randn(4, 4)
|
|
inp = (inp_a, inp_b)
|
|
|
|
count = 0
|
|
|
|
def dynamify_inp(x):
|
|
# Mark the second input a[1] dynamic
|
|
nonlocal count
|
|
if count == 1:
|
|
dim = torch.export.Dim("dim", min=3)
|
|
count += 1
|
|
return {0: dim}
|
|
count += 1
|
|
return None
|
|
|
|
dynamic_shapes = tree_map(dynamify_inp, inp)
|
|
|
|
foo = Foo()
|
|
ep = torch.export.export(foo, inp, dynamic_shapes=dynamic_shapes)
|
|
|
|
test_inp = ((torch.randn(4, 4), torch.randn(2, 4)), torch.randn(4, 4))
|
|
with self.assertRaisesRegex(RuntimeError, "shape\[0\] to be >= 3, but got 2"):
|
|
ep.module()(*test_inp)
|
|
|
|
def test_nested_module(self):
|
|
class M1(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + x
|
|
|
|
class M2(torch.nn.Module):
|
|
def forward(self, x):
|
|
m = M1()
|
|
return m(x) * x
|
|
|
|
inps = (torch.randn(3, 3),)
|
|
ep = export(M2(), inps)
|
|
self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps)))
|
|
|
|
add_nodes = [
|
|
node
|
|
for node in ep.graph.nodes
|
|
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor
|
|
]
|
|
self.assertEqual(len(add_nodes), 1)
|
|
add_node = add_nodes[0]
|
|
self.assertEqual(len(add_node.meta["nn_module_stack"]), 1)
|
|
self.assertTrue("M2" in list(add_node.meta["nn_module_stack"].values())[0][1])
|
|
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x : [num_users=2] = placeholder[target=x]
|
|
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %x), kwargs = {})
|
|
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {})
|
|
return (mul,)""",
|
|
)
|
|
|
|
unflattened = unflatten(ep)
|
|
self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps)))
|
|
|
|
def test_nested_module_with_init_buffer(self):
|
|
class M1(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.b = torch.ones(3, 3)
|
|
|
|
def forward(self, x):
|
|
return x + self.b
|
|
|
|
class M2(torch.nn.Module):
|
|
def forward(self, x):
|
|
m = M1()
|
|
return m(x) * x
|
|
|
|
inps = (torch.randn(3, 3),)
|
|
ep = export(M2(), inps)
|
|
self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps)))
|
|
|
|
self.assertEqual(len(ep.state_dict), 0)
|
|
self.assertEqual(len(ep.constants), 0)
|
|
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x : [num_users=2] = placeholder[target=x]
|
|
%ones : [num_users=1] = call_function[target=torch.ops.aten.ones.default](args = ([3, 3],), kwargs = {device: cpu, pin_memory: False})
|
|
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %ones), kwargs = {})
|
|
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {})
|
|
return (mul,)""",
|
|
)
|
|
|
|
unflattened = unflatten(ep)
|
|
self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps)))
|
|
|
|
@testing.expectedFailureRetraceability # Retracing tensor constants results in buffers
|
|
def test_nested_module_with_constant_buffer(self):
|
|
class M1(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.b = torch.tensor(5)
|
|
|
|
def forward(self, x):
|
|
return x + self.b
|
|
|
|
class M2(torch.nn.Module):
|
|
def forward(self, x):
|
|
m = M1()
|
|
return m(x) * x
|
|
|
|
inps = (torch.randn(3, 3),)
|
|
ep = export(M2(), inps)
|
|
self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps)))
|
|
|
|
self.assertEqual(len(ep.state_dict), 0)
|
|
self.assertEqual(len(ep.constants), 1)
|
|
|
|
if is_training_ir_test(self._testMethodName):
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%c_lifted_tensor_0 : [num_users=1] = placeholder[target=c_lifted_tensor_0]
|
|
%x : [num_users=2] = placeholder[target=x]
|
|
%lift_fresh_copy : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%c_lifted_tensor_0,), kwargs = {})
|
|
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %lift_fresh_copy), kwargs = {})
|
|
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {})
|
|
return (mul,)""",
|
|
)
|
|
else:
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%c_lifted_tensor_0 : [num_users=1] = placeholder[target=c_lifted_tensor_0]
|
|
%x : [num_users=2] = placeholder[target=x]
|
|
%lift_fresh_copy : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%c_lifted_tensor_0,), kwargs = {})
|
|
%detach : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%lift_fresh_copy,), kwargs = {})
|
|
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %detach), kwargs = {})
|
|
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {})
|
|
return (mul,)""",
|
|
)
|
|
|
|
unflattened = unflatten(ep)
|
|
self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps)))
|
|
|
|
def test_nested_module_with_parameter(self):
|
|
class M1(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.a = torch.nn.Parameter(torch.ones(3, 3))
|
|
self.b = torch.nn.Parameter(torch.tensor(5.0))
|
|
|
|
def forward(self, x):
|
|
return x + self.a * self.b
|
|
|
|
class M2(torch.nn.Module):
|
|
def forward(self, x):
|
|
m = M1()
|
|
return m(x) * x
|
|
|
|
inps = (torch.randn(3, 3),)
|
|
# Strict export segfaults (Issue #128109)
|
|
ep = torch.export.export(M2(), inps, strict=False)
|
|
self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps)))
|
|
|
|
self.assertEqual(len(ep.state_dict), 0)
|
|
self.assertEqual(len(ep.constants), 1)
|
|
|
|
self.assertExpectedInline(
|
|
str(ep.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%c_lifted_tensor_0 : [num_users=1] = placeholder[target=c_lifted_tensor_0]
|
|
%x : [num_users=2] = placeholder[target=x]
|
|
%ones : [num_users=1] = call_function[target=torch.ops.aten.ones.default](args = ([3, 3],), kwargs = {device: cpu, pin_memory: False})
|
|
%detach : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%ones,), kwargs = {})
|
|
%lift_fresh_copy : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%c_lifted_tensor_0,), kwargs = {})
|
|
%detach_1 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%lift_fresh_copy,), kwargs = {})
|
|
%detach_2 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%detach_1,), kwargs = {})
|
|
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%detach, %detach_2), kwargs = {})
|
|
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %mul), kwargs = {})
|
|
%mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {})
|
|
return (mul_1,)""",
|
|
)
|
|
|
|
unflattened = unflatten(ep)
|
|
self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps)))
|
|
|
|
def test_lazy_module_kwargs(self):
|
|
class LazyModule(torch.nn.modules.lazy.LazyModuleMixin, torch.nn.Module):
|
|
def initialize_parameters(self, *args, **kwargs):
|
|
pass
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
|
|
m = LazyModule()
|
|
ep = torch.export.export(
|
|
m, (), {"x": torch.randn(3, 3), "y": torch.randn(3, 3)}
|
|
)
|
|
inputs = {"x": torch.randn(3, 3), "y": torch.randn(3, 3)}
|
|
self.assertEqual(ep.module()(**inputs), m(**inputs))
|
|
|
|
def test_retrace_pre_autograd(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buffer = torch.nn.Buffer(torch.ones(4, 4))
|
|
|
|
def forward(self, x):
|
|
self.buffer.add_(4)
|
|
return x.sum() + self.buffer.sum()
|
|
|
|
inp = torch.randn(4, 4)
|
|
gm = _export(
|
|
Foo(),
|
|
(inp,),
|
|
dynamic_shapes=({0: torch.export.Dim("dim", min=3)},),
|
|
pre_dispatch=True,
|
|
).module()
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, escape("Expected input at *args[0].shape[0]")
|
|
):
|
|
gm(torch.randn(2, 2))
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, escape("Expected input at *args[0].shape[0]")
|
|
):
|
|
torch.export.export(gm, (torch.randn(2, 2),))
|
|
|
|
ep = torch.export.export(
|
|
gm,
|
|
(torch.randn(5, 4),),
|
|
dynamic_shapes=({0: torch.export.Dim("dim", min=3)},),
|
|
)
|
|
|
|
test_inp = torch.ones(8, 4)
|
|
self.assertTrue(torch.allclose(ep.module()(test_inp), Foo().forward(test_inp)))
|
|
|
|
def test_runtime_assert_with_size(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
a = x.item()
|
|
torch._check_is_size(a)
|
|
torch._check(a <= y.size(0))
|
|
return y[:a]
|
|
|
|
ep = export(
|
|
M(),
|
|
(torch.tensor(5), torch.ones(10)),
|
|
dynamic_shapes={"x": None, "y": {0: torch.export.Dim("t")}},
|
|
)
|
|
inp = (torch.tensor(6), torch.randn(13))
|
|
self.assertTrue(torch.allclose(ep.module()(*inp), M()(*inp)))
|
|
|
|
@unittest.skip("Test is only supposed to work with non-strict mode")
|
|
def test_issue_113041(self):
|
|
class TestModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.a = torch.tensor(1.0)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return x + self.a
|
|
|
|
def forward_hook(module: torch.nn.Module, inputs, output) -> torch.Tensor:
|
|
return 2 * output
|
|
|
|
seq = torch.nn.Sequential(TestModule()).eval()
|
|
seq.b = torch.tensor(2)
|
|
handle = seq.register_forward_hook(forward_hook)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.seq = seq
|
|
|
|
def forward(self, x):
|
|
return self.seq(x) + self.seq.b
|
|
|
|
inp = (torch.randn(2, 8),)
|
|
ep = export(M(), inp) # This errors because dynamo adds an extra input
|
|
|
|
def test_export_with_fake_tensor_inputs(self):
|
|
fake_mode = torch._subclasses.fake_tensor.FakeTensorMode()
|
|
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
|
|
def forward(self, x):
|
|
out = self.linear(x)
|
|
return out
|
|
|
|
# Put the inputs on a device
|
|
with fake_mode, torch.device("meta"):
|
|
x = torch.rand(5, 2, 2)
|
|
model = Model()
|
|
|
|
exported_program = torch.export.export(model, (x,))
|
|
export_res = exported_program.module()(x)
|
|
exp_res = model(x)
|
|
all_meta_val = [
|
|
node.meta["val"]
|
|
for node in exported_program.graph_module.graph.nodes
|
|
if "val" in node.meta
|
|
]
|
|
self.assertTrue(export_res.size() == exp_res.size())
|
|
self.assertTrue(all(val.device == x.device for val in all_meta_val))
|
|
self.assertTrue(
|
|
all(val.fake_mode is all_meta_val[0].fake_mode for val in all_meta_val)
|
|
)
|
|
decomposed_ep = exported_program.run_decompositions()
|
|
export_res = decomposed_ep.module()(x)
|
|
self.assertTrue(export_res.size() == exp_res.size())
|
|
|
|
def test_export_with_fake_tensor_inputs_on_cuda_devices(self):
|
|
fake_mode = torch._subclasses.fake_tensor.FakeTensorMode()
|
|
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
|
|
def forward(self, x):
|
|
out = self.linear(x)
|
|
return out
|
|
|
|
# Put the inputs on a device
|
|
with fake_mode, torch.device("meta"):
|
|
x = torch.rand(5, 2, 2)
|
|
model = Model()
|
|
|
|
# Manualy set the fake_device of fake tensors.
|
|
x.fake_device = torch.device("cuda:0")
|
|
for n, p in model.named_parameters():
|
|
p.fake_device = torch.device("cuda:0")
|
|
|
|
# Need to set all the requires_grad of tensors to False, because fake_tensor with CUDA device
|
|
# doesn't quite work well with aot_autograd right now due to some logic fails
|
|
# the check in call getDeviceGuardImpl in InputMetadata.
|
|
x.requires_grad = False
|
|
for n, p in model.named_parameters():
|
|
p.requires_grad = False
|
|
|
|
def check_device_and_fake_mode():
|
|
exported_program = torch.export.export(model, (x,))
|
|
export_res = exported_program.module()(x)
|
|
exp_res = model(x)
|
|
all_meta_val = [
|
|
node.meta["val"]
|
|
for node in exported_program.graph_module.graph.nodes
|
|
if "val" in node.meta
|
|
]
|
|
self.assertTrue(export_res.size() == exp_res.size())
|
|
self.assertTrue(all(val.device == x.device for val in all_meta_val))
|
|
self.assertTrue(
|
|
all(val.fake_mode is all_meta_val[0].fake_mode for val in all_meta_val)
|
|
)
|
|
|
|
check_device_and_fake_mode()
|
|
|
|
def test_run_decomposition_supports_user_input_mutation(self):
|
|
class SingleOp(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.op = torch.ops.aten.native_batch_norm
|
|
|
|
def forward(
|
|
self,
|
|
input,
|
|
weight,
|
|
bias,
|
|
running_mean,
|
|
running_var,
|
|
training,
|
|
momentum,
|
|
eps,
|
|
**kwargs,
|
|
):
|
|
return self.op(
|
|
input,
|
|
weight,
|
|
bias,
|
|
running_mean,
|
|
running_var,
|
|
training,
|
|
momentum,
|
|
eps,
|
|
**kwargs,
|
|
)
|
|
|
|
input = torch.randn(5, 5, 5)
|
|
weight = torch.randn(5)
|
|
bias = torch.randn(5)
|
|
running_mean = torch.randn(5)
|
|
running_var = torch.randn(5)
|
|
training = True
|
|
momentum = 0.5
|
|
eps = 0.6
|
|
|
|
model = SingleOp()
|
|
output = model(
|
|
input, weight, bias, running_mean, running_var, training, momentum, eps
|
|
)
|
|
|
|
ep = torch.export.export(
|
|
model,
|
|
args=(
|
|
input,
|
|
weight,
|
|
bias,
|
|
running_mean,
|
|
running_var,
|
|
training,
|
|
momentum,
|
|
eps,
|
|
),
|
|
)
|
|
ep.run_decompositions(decomp_table=torch._decomp.decomposition_table)
|
|
self.assertEqual(
|
|
ep.module()(
|
|
input, weight, bias, running_mean, running_var, training, momentum, eps
|
|
),
|
|
output,
|
|
)
|
|
|
|
def test_export_graph_with_no_inputs(self):
|
|
# We saw this pattern when users want to export
|
|
# a graph that initlizes the states of a model.
|
|
class Module(torch.nn.Module):
|
|
def forward(self):
|
|
return torch.randn(3, 4), torch.randn(3, 4)
|
|
|
|
f = Module()
|
|
ep = torch.export.export(f, ())
|
|
a, b = ep.module()()
|
|
self.assertEqual(a.size(), torch.Size([3, 4]))
|
|
self.assertEqual(b.size(), torch.Size([3, 4]))
|
|
|
|
# Contains unbacked symint
|
|
class M(torch.nn.Module):
|
|
def forward(self):
|
|
full = torch.full((), 11)
|
|
i0 = full.item()
|
|
return (torch.full((i0,), 0.0),)
|
|
|
|
f = M()
|
|
ep = torch.export.export(f, ())
|
|
a = ep.module()()[0]
|
|
self.assertEqual(a.size(), torch.Size([11]))
|
|
self.assertEqual(a, torch.zeros(11))
|
|
|
|
def test_pad_sequence(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch._C._nn.pad_sequence([x])
|
|
|
|
m0 = Module()
|
|
inputs = (torch.randn(3, 2),)
|
|
ep = torch.export.export(
|
|
m0, inputs, dynamic_shapes={"x": {0: Dim("batch_size")}}
|
|
)
|
|
self.assertEqual(ep.module()(*inputs), m0(*inputs))
|
|
|
|
class ModuleBatchFirst(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch._C._nn.pad_sequence([x], batch_first=True)
|
|
|
|
m1 = ModuleBatchFirst()
|
|
inputs = (torch.randn(3, 2),)
|
|
ep = torch.export.export(
|
|
m1, inputs, dynamic_shapes={"x": {0: Dim("batch_size")}}
|
|
)
|
|
self.assertEqual(ep.module()(*inputs), m1(*inputs))
|
|
|
|
class ModuleMulti(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return torch._C._nn.pad_sequence([x, y, z])
|
|
|
|
m2 = ModuleMulti()
|
|
inputs = (torch.randn(5, 2), torch.randn(4, 2), torch.randn(3, 2))
|
|
ep = torch.export.export(
|
|
m2,
|
|
inputs,
|
|
dynamic_shapes={
|
|
"x": {0: Dim("batch_size")},
|
|
"y": {0: Dim("y")},
|
|
"z": {0: Dim("z")},
|
|
},
|
|
)
|
|
self.assertEqual(ep.module()(*inputs), m2(*inputs))
|
|
|
|
class ModuleMultiBatchFirst(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return torch._C._nn.pad_sequence([x, y, z], batch_first=True)
|
|
|
|
m3 = ModuleMulti()
|
|
inputs = (torch.randn(5, 2), torch.randn(4, 2), torch.randn(3, 2))
|
|
ep = torch.export.export(
|
|
m2,
|
|
inputs,
|
|
dynamic_shapes={
|
|
"x": {0: Dim("batch_size")},
|
|
"y": {0: Dim("y")},
|
|
"z": {0: Dim("z")},
|
|
},
|
|
)
|
|
self.assertEqual(ep.module()(*inputs), m3(*inputs))
|
|
|
|
def test_export_then_compile_tensor_ctor(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, scores, mask):
|
|
scores = scores.masked_fill(
|
|
mask, torch.tensor(torch.finfo(scores.dtype).min)
|
|
) # (bs, n_heads, q_length, k_length)
|
|
return scores
|
|
|
|
tensor_cpu = torch.randn(2, 4)
|
|
mask_cpu = torch.BoolTensor(
|
|
[[False, True, False, False], [False, False, False, False]]
|
|
)
|
|
|
|
m = M().eval()
|
|
# res_ref = m(tensor_cpu, mask_cpu)
|
|
# print("res_ref is: {}".format(res_ref), flush=True)
|
|
|
|
exported_model = _export(m, (tensor_cpu, mask_cpu), pre_dispatch=True).module()
|
|
optimized_model = torch.compile(exported_model)
|
|
optimized_model(tensor_cpu, mask_cpu)
|
|
|
|
def test_export_input_mutation_static_shape(self):
|
|
class MutationModel(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
x.view(3, 2, -1).add_(y)
|
|
return x
|
|
|
|
inputs = (torch.randn(12), torch.tensor(2))
|
|
model = MutationModel()
|
|
ep = export(model, inputs)
|
|
inputs_export = copy.deepcopy(inputs)
|
|
inputs_model = copy.deepcopy(inputs)
|
|
self.assertEqual(ep.module()(*inputs_export), model(*inputs_model))
|
|
self.assertEqual(inputs[0] + torch.tensor(2), inputs_model[0])
|
|
self.assertEqual(inputs[0] + torch.tensor(2), inputs_export[0])
|
|
|
|
def test_export_input_mutation_dynamic_shape(self):
|
|
class MutationModel(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
x[0].mul_(y)
|
|
return x
|
|
|
|
inputs = ((torch.randn(12), torch.randn(3, 2)), 2.0)
|
|
model = MutationModel()
|
|
ep = torch.export.export(
|
|
model,
|
|
inputs,
|
|
dynamic_shapes={"x": ({0: torch.export.Dim("dim")}, None), "y": None},
|
|
)
|
|
nodes = list(ep.graph.nodes)
|
|
self.assertEqual(nodes[0].op, "placeholder")
|
|
self.assertIsInstance(nodes[0].meta["val"], torch.Tensor)
|
|
self.assertIsInstance(nodes[0].meta["val"].shape[0], torch.SymInt)
|
|
|
|
inputs_export = copy.deepcopy(inputs)
|
|
inputs_model = copy.deepcopy(inputs)
|
|
self.assertEqual(ep.module()(*inputs_export), model(*inputs_model))
|
|
self.assertEqual(inputs[0][0] * 2.0, inputs_model[0][0])
|
|
self.assertEqual(inputs[0][0] * 2.0, inputs_export[0][0])
|
|
|
|
def test_export_input_mutation_bug(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
x[:, :2, :] = x[:, :2, :] + 1
|
|
return x
|
|
|
|
inputs = (torch.ones(4, 4, 4),)
|
|
ep = torch.export.export(M(), inputs)
|
|
m = ep.module()
|
|
|
|
# Make the name conflict with a placeholder name that we get from
|
|
# aot_export
|
|
for i, node in enumerate(m.graph.nodes):
|
|
if node.op == "placeholder":
|
|
node.name = f"arg0_{i + 1}"
|
|
m.recompile()
|
|
|
|
ep = torch.export.export(m, inputs)
|
|
|
|
inputs = (torch.randn(4, 4, 4),)
|
|
self.assertEqual(
|
|
ep.module()(*copy.deepcopy(inputs)), M()(*copy.deepcopy(inputs))
|
|
)
|
|
|
|
def test__scaled_dot_product_flash_attention(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, q, k, v):
|
|
res = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
|
return res[0]
|
|
|
|
m = Module()
|
|
inputs = (
|
|
torch.randn(5, 4, 3, 2),
|
|
torch.randn(5, 4, 3, 2),
|
|
torch.randn(5, 4, 3, 2),
|
|
)
|
|
ep = export(m, inputs)
|
|
self.assertEqual(ep.module()(*inputs), m(*inputs))
|
|
|
|
@testing.expectedFailureSerDer # symfloat nyi
|
|
def test_sym_sqrt(self):
|
|
import math
|
|
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x / torch.sym_sqrt(x.shape[0])
|
|
|
|
ep = export(M(), (torch.ones(16, 4),), dynamic_shapes={"x": {0: Dim("dim")}})
|
|
_ExportPassBaseDeprecatedDoNotUse()(ep.graph_module)
|
|
FileCheck().check_count("torch._sym_sqrt", 1, exactly=True).run(
|
|
ep.graph_module.code
|
|
)
|
|
|
|
def test_check_specialized_int(self):
|
|
class SingleOp(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.op = torch.ops.aten.scatter_add
|
|
|
|
def forward(self, t, dim, index, src, **kwargs):
|
|
return self.op(t, dim, index, src, **kwargs)
|
|
|
|
t = torch.randn(10, 5)
|
|
dim = -1
|
|
index = torch.tensor(
|
|
[
|
|
[2, 4, 3, 1, 0],
|
|
[0, 2, 1, 4, 3],
|
|
[3, 1, 4, 2, 0],
|
|
[4, 0, 3, 1, 2],
|
|
[3, 0, 4, 1, 2],
|
|
]
|
|
)
|
|
src = torch.randn(5, 5)
|
|
|
|
model = SingleOp()
|
|
output = model(t, dim, index, src)
|
|
|
|
ep = torch.export.export(model, args=(t, dim, index, src))
|
|
ep.run_decompositions(decomp_table=torch._decomp.decomposition_table)
|
|
self.assertEqual(ep.module()(t, dim, index, src), output)
|
|
|
|
def test_fqn(self):
|
|
class NestedChild(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x / x
|
|
|
|
class Child1(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.nested = NestedChild()
|
|
self.register_parameter(
|
|
"child1param", torch.nn.Parameter(torch.ones(2, 3))
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.nested(x)
|
|
return x + self.child1param
|
|
|
|
class Child2(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.child2buffer = torch.nn.Buffer(torch.ones(2, 3))
|
|
|
|
def forward(self, x):
|
|
return x - self.child2buffer
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = Child1()
|
|
self.bar = Child2()
|
|
self.register_parameter(
|
|
"rootparam", torch.nn.Parameter(torch.ones(2, 3))
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = x * self.rootparam
|
|
x = self.foo(x)
|
|
x = self.bar(x)
|
|
return x
|
|
|
|
orig_eager = MyModule()
|
|
test_inp = torch.randn(2, 3)
|
|
|
|
torch_gm = _export_to_torch_ir(orig_eager, (torch.rand(2, 3),), {})
|
|
for k, v in orig_eager.state_dict().items():
|
|
normalized_k = k.replace(".", "_")
|
|
self.assertIn(normalized_k, torch_gm.state_dict())
|
|
self.assertEqual(v, torch_gm.state_dict()[normalized_k])
|
|
self.assertTrue(torch.allclose(torch_gm(test_inp), orig_eager(test_inp)))
|
|
|
|
pre_autograd_gm = torch.export._trace._export(
|
|
orig_eager, (torch.rand(2, 3),), {}, pre_dispatch=True
|
|
).module()
|
|
for k, v in orig_eager.state_dict().items():
|
|
normalized_k = k.replace(".", "_")
|
|
self.assertIn(k, pre_autograd_gm.state_dict())
|
|
self.assertEqual(v, pre_autograd_gm.state_dict()[k])
|
|
self.assertTrue(torch.allclose(pre_autograd_gm(test_inp), orig_eager(test_inp)))
|
|
|
|
ep = export(orig_eager, (torch.rand(2, 3),), {})
|
|
for k, v in orig_eager.state_dict().items():
|
|
# We do not need to normalize the key here because exported
|
|
# program's state dict is able to contain the module information.
|
|
self.assertIn(k, ep.state_dict)
|
|
self.assertEqual(v, ep.state_dict[k])
|
|
self.assertTrue(torch.allclose(ep.module()(test_inp), orig_eager(test_inp)))
|
|
|
|
def test_nn_module_stack(self):
|
|
class Leaf(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.leaf = Leaf()
|
|
self.buffer = torch.nn.Buffer(torch.randn(4, 4))
|
|
|
|
def forward(self, x):
|
|
return self.buffer.sum() + self.leaf(x).sum()
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
y = self.bar.buffer + x
|
|
return (self.bar(x) + y.sum(),)
|
|
|
|
inp = (torch.randn(4, 4),)
|
|
mod = Foo()
|
|
ep_strict = torch.export.export(mod, inp).run_decompositions()
|
|
ep_non_strict = torch.export.export(mod, inp, strict=False).run_decompositions()
|
|
|
|
gm_unflat_non_strict = unflatten(ep_non_strict)
|
|
self.assertTrue(hasattr(gm_unflat_non_strict, "bar"))
|
|
self.assertTrue(hasattr(gm_unflat_non_strict.bar, "buffer"))
|
|
self.assertTrue(hasattr(gm_unflat_non_strict.bar, "leaf"))
|
|
|
|
gm_unflat_strict = unflatten(ep_strict)
|
|
|
|
self.assertEqual(gm_unflat_non_strict(*inp), gm_unflat_strict(*inp))
|
|
self.assertExpectedInline(
|
|
str(gm_unflat_non_strict.bar.leaf.linear.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x : [num_users=1] = placeholder[target=x]
|
|
%weight : [num_users=1] = get_attr[target=weight]
|
|
%bias : [num_users=1] = get_attr[target=bias]
|
|
%permute : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%weight, [1, 0]), kwargs = {})
|
|
%addmm : [num_users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%bias, %x, %permute), kwargs = {})
|
|
return addmm""",
|
|
)
|
|
|
|
gm_flat_non_strict = ep_non_strict.module()
|
|
gm_flat_strict = ep_strict.module()
|
|
|
|
self.assertEqual(gm_flat_non_strict(*inp), gm_flat_strict(*inp))
|
|
|
|
def test_nn_module_stack_shared_submodule(self):
|
|
class Leaf(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.leaf = Leaf()
|
|
self.buffer = torch.nn.Buffer(torch.randn(4, 4))
|
|
|
|
def forward(self, x):
|
|
return self.buffer.sum() + self.leaf(x).sum()
|
|
|
|
class BarDifferent(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.leaf = Leaf()
|
|
|
|
def forward(self, x):
|
|
a = self.leaf(x).sum()
|
|
b = self.leaf(x).sum()
|
|
return a + b
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.bar = Bar()
|
|
self.bar_different = BarDifferent()
|
|
|
|
def forward(self, x):
|
|
y = self.bar.buffer + x
|
|
return (
|
|
self.bar(x) + self.bar_different(x + 2),
|
|
y.sum(),
|
|
)
|
|
|
|
inp = (torch.randn(4, 4),)
|
|
mod = Foo()
|
|
ep_strict = torch.export.export(mod, inp)
|
|
ep_non_strict = torch.export.export(mod, inp, strict=False)
|
|
|
|
gm_unflat_non_strict = unflatten(ep_non_strict)
|
|
self.assertTrue(hasattr(gm_unflat_non_strict, "bar"))
|
|
self.assertTrue(hasattr(gm_unflat_non_strict.bar, "buffer"))
|
|
self.assertTrue(hasattr(gm_unflat_non_strict.bar, "leaf"))
|
|
self.assertTrue(hasattr(gm_unflat_non_strict.bar_different, "leaf"))
|
|
|
|
gm_unflat_strict = unflatten(ep_strict)
|
|
|
|
self.assertEqual(gm_unflat_non_strict(*inp), gm_unflat_strict(*inp))
|
|
self.assertExpectedInline(
|
|
str(gm_unflat_non_strict.bar.leaf.linear.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%x : [num_users=1] = placeholder[target=x]
|
|
%weight : [num_users=1] = get_attr[target=weight]
|
|
%bias : [num_users=1] = get_attr[target=bias]
|
|
%linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %weight, %bias), kwargs = {})
|
|
return linear""",
|
|
)
|
|
self.assertExpectedInline(
|
|
str(gm_unflat_non_strict.bar_different.leaf.linear.graph).strip(),
|
|
"""\
|
|
graph():
|
|
%add_2 : [num_users=1] = placeholder[target=add_2]
|
|
%weight : [num_users=1] = get_attr[target=weight]
|
|
%bias : [num_users=1] = get_attr[target=bias]
|
|
%linear_1 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%add_2, %weight, %bias), kwargs = {})
|
|
return linear_1""",
|
|
)
|
|
|
|
gm_flat_non_strict = ep_non_strict.module()
|
|
gm_flat_strict = ep_strict.module()
|
|
|
|
self.assertEqual(gm_flat_non_strict(*inp), gm_flat_strict(*inp))
|
|
|
|
def test_stack_trace(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x *= 2.0
|
|
return x
|
|
|
|
ep = export(
|
|
Foo(),
|
|
(torch.randn(4, 4),),
|
|
)
|
|
# check correct lines are in stack trace
|
|
trace_mul = [node for node in ep.graph.nodes if node.name == "mul"][0].meta.get(
|
|
"stack_trace", ""
|
|
)
|
|
self.assertTrue(
|
|
re.search(r"test_export.py.*in forward\n.*x \*= 2.0", trace_mul)
|
|
)
|
|
trace_addmm = [
|
|
node for node in ep.graph.nodes if node.name in ["addmm", "linear"]
|
|
][0].meta.get("stack_trace", "")
|
|
self.assertTrue(
|
|
re.search(
|
|
r"test_export.py.*in forward\n.*x = self.linear\(x\)", trace_addmm
|
|
)
|
|
)
|
|
|
|
# Guard validation upsets the guard
|
|
def test_cond_with_module_stack_export_with(self):
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
def true_fn(x):
|
|
return self.linear(x).cos()
|
|
|
|
def false_fn(x):
|
|
return self.linear(x).sin()
|
|
|
|
return torch.cond(x.sum() > 4, true_fn, false_fn, [x])
|
|
|
|
class CondExport(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
return x.cos() + self.bar(x)
|
|
|
|
inp = (torch.randn(4, 4),)
|
|
ep = torch.export.export(CondExport(), inp, strict=False)
|
|
self.assertExpectedInline(
|
|
ep.graph_module.code.strip(),
|
|
"""\
|
|
def forward(self, p_bar_linear_weight, p_bar_linear_bias, x):
|
|
cos = torch.ops.aten.cos.default(x)
|
|
sum_1 = torch.ops.aten.sum.default(x)
|
|
gt = torch.ops.aten.gt.Scalar(sum_1, 4); sum_1 = None
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [p_bar_linear_bias, p_bar_linear_weight, x]); gt = true_graph_0 = false_graph_0 = p_bar_linear_bias = p_bar_linear_weight = x = None
|
|
getitem = cond[0]; cond = None
|
|
add = torch.ops.aten.add.Tensor(cos, getitem); cos = getitem = None
|
|
return (add,)""",
|
|
)
|
|
|
|
cond_top_level_nn_module_stack = [
|
|
node.meta["nn_module_stack"]
|
|
for node in ep.graph.nodes
|
|
if node.name == "true_graph_0"
|
|
][0]
|
|
|
|
self.assertTrue(
|
|
"test_cond_with_module_stack_export_with.<locals>.Bar"
|
|
in str(cond_top_level_nn_module_stack)
|
|
)
|
|
|
|
# TODO: See https://github.com/pytorch/pytorch/issues/115790
|
|
@unittest.expectedFailure
|
|
def test_cond_with_module_stack_export_with_unflatten(self):
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
def true_fn(x):
|
|
return self.linear(x).cos()
|
|
|
|
def false_fn(x):
|
|
return self.linear(x).sin()
|
|
|
|
return torch.cond(x.shape[0] > 4, true_fn, false_fn, [x])
|
|
|
|
class CondExport(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
return x.cos() + self.bar(x)
|
|
|
|
inp = (torch.randn(4, 4),)
|
|
ep = torch.export.export(CondExport(), inp, strict=False)
|
|
|
|
cond_top_level_nn_module_stack = [
|
|
node.meta["nn_module_stack"]
|
|
for node in ep.graph.nodes
|
|
if node.name == "true_graph_0"
|
|
][0]
|
|
|
|
# we can't preserve nn_module_stack for the subgraphs for now.
|
|
for node in ep.graph_module.true_graph_0.graph.nodes:
|
|
self.assertEqual(
|
|
node.meta["nn_module_stack"], cond_top_level_nn_module_stack
|
|
)
|
|
|
|
# this doesn't work today
|
|
gm_unflat_strict = unflatten(ep)
|
|
|
|
def test_predispatch_cond(self):
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.pred = torch.nn.Buffer(torch.tensor(False))
|
|
self.t = torch.nn.Buffer(torch.tensor(10))
|
|
|
|
def forward(self, x, y):
|
|
def true_fn(x, y):
|
|
with torch.enable_grad():
|
|
return x - 1 + self.t + y
|
|
|
|
return torch.cond(
|
|
self.pred,
|
|
true_fn,
|
|
lambda x, y: x + 1 - self.t + y,
|
|
[x, y],
|
|
)
|
|
|
|
model = Model()
|
|
with torch.no_grad():
|
|
exported_program = torch.export._trace._export(
|
|
model,
|
|
(torch.tensor(10), torch.tensor(12)),
|
|
{},
|
|
dynamic_shapes=None,
|
|
pre_dispatch=True,
|
|
strict=False,
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
str(exported_program.graph_module.code.strip()),
|
|
"""\
|
|
def forward(self, b_pred, b_t, x, y):
|
|
true_graph_0 = self.true_graph_0
|
|
false_graph_0 = self.false_graph_0
|
|
cond = torch.ops.higher_order.cond(b_pred, true_graph_0, false_graph_0, [b_t, x, y]); b_pred = true_graph_0 = false_graph_0 = b_t = x = y = None
|
|
getitem = cond[0]; cond = None
|
|
return (getitem,)""",
|
|
) # noqa: B950
|
|
|
|
self.assertExpectedInline(
|
|
str(exported_program.graph_module.true_graph_0.code.strip()),
|
|
"""\
|
|
def forward(self, b_t, x, y):
|
|
submod_3 = self.submod_1
|
|
add_1 = torch._higher_order_ops.wrap.wrap_with_set_grad_enabled(True, submod_3, x, b_t, y); submod_3 = x = b_t = y = None
|
|
getitem = add_1[0]; add_1 = None
|
|
return (getitem,)""",
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
str(exported_program.graph_module.true_graph_0.submod_1.code.strip()),
|
|
"""\
|
|
def forward(self, x, b_t, y):
|
|
sub = torch.ops.aten.sub.Tensor(x, 1); x = None
|
|
add = torch.ops.aten.add.Tensor(sub, b_t); sub = b_t = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, y); add = y = None
|
|
return (add_1,)""",
|
|
)
|
|
|
|
def test_predispatch_grad_wrappers(self):
|
|
class Model(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
with torch.enable_grad():
|
|
x = x - y
|
|
with torch.no_grad():
|
|
x = x + y
|
|
return x
|
|
|
|
# no grad
|
|
model = Model()
|
|
with torch.no_grad():
|
|
ep_nograd = torch.export._trace._export(
|
|
model,
|
|
(torch.tensor(10), torch.tensor(12)),
|
|
{},
|
|
dynamic_shapes=None,
|
|
pre_dispatch=True,
|
|
strict=False,
|
|
)
|
|
# check that only sub op is wrapped with grad_enabled
|
|
getattr_nodes = [
|
|
node for node in ep_nograd.graph.nodes if node.op == "get_attr"
|
|
]
|
|
self.assertEqual(len(getattr_nodes), 1)
|
|
grad_subgraph = getattr(ep_nograd.graph_module, getattr_nodes[0].target)
|
|
op_node = [
|
|
node for node in grad_subgraph.graph.nodes if node.op == "call_function"
|
|
][0]
|
|
self.assertEqual(op_node.target._name, "aten::sub.Tensor")
|
|
|
|
# enable grad
|
|
model = Model()
|
|
ep_grad = torch.export._trace._export(
|
|
model,
|
|
(torch.tensor(10), torch.tensor(12)),
|
|
{},
|
|
dynamic_shapes=None,
|
|
pre_dispatch=True,
|
|
strict=False,
|
|
)
|
|
# check that only add op is wrapped with grad_enabled
|
|
getattr_nodes = [node for node in ep_grad.graph.nodes if node.op == "get_attr"]
|
|
self.assertEqual(len(getattr_nodes), 1)
|
|
grad_subgraph = getattr(ep_grad.graph_module, getattr_nodes[0].target)
|
|
op_node = [
|
|
node for node in grad_subgraph.graph.nodes if node.op == "call_function"
|
|
][0]
|
|
self.assertEqual(op_node.target._name, "aten::add.Tensor")
|
|
|
|
@testing.expectedFailureRetraceability
|
|
def test_layer_sharing(self):
|
|
N, C, H, W = 1, 2, 2, 3
|
|
|
|
class Module(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
layer = torch.nn.LayerNorm([C, H, W])
|
|
self.norms = torch.nn.ModuleList(
|
|
[
|
|
layer,
|
|
layer,
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
for norm in self.norms:
|
|
x = norm(x)
|
|
return x
|
|
|
|
m = Module()
|
|
copied_m = copy.deepcopy(m)
|
|
ep = export(copied_m, (torch.randn(N, C, H, W),))
|
|
self.assertEqual(copied_m.state_dict(), m.state_dict())
|
|
self.assertEqual(ep.state_dict, m.state_dict())
|
|
|
|
def test_non_persistent_buffer(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = torch.nn.Buffer(torch.rand(2, 3), persistent=False)
|
|
|
|
def forward(self, x):
|
|
return self.foo + x
|
|
|
|
class MyOuterModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.inner = MyModule()
|
|
|
|
def forward(self, x):
|
|
return self.inner(x)
|
|
|
|
inp = torch.rand(2, 3)
|
|
|
|
def _test(m, non_persistent_buffer):
|
|
ep = export(m, (inp,), {})
|
|
|
|
self.assertEqual(ep.module()(inp), m(inp))
|
|
# Non-persistent buffers should not show up in the state dict
|
|
self.assertNotIn(non_persistent_buffer, ep.state_dict)
|
|
named_buffers = {name: buffer for (name, buffer) in ep.named_buffers()}
|
|
# But they should show up in named_buffers()
|
|
self.assertIn(non_persistent_buffer, named_buffers)
|
|
self.assertIn(non_persistent_buffer, ep.constants)
|
|
self.assertEqual(len(ep.constants), 1)
|
|
|
|
# Check the same properties of the unlifted module
|
|
mod = ep.module()
|
|
self.assertNotIn(non_persistent_buffer, mod.state_dict())
|
|
mod_named_buffers = {name: buffer for (name, buffer) in mod.named_buffers()}
|
|
self.assertIn(non_persistent_buffer, mod_named_buffers)
|
|
self.assertIn(non_persistent_buffer, ep.constants)
|
|
self.assertEqual(len(ep.constants), 1)
|
|
self.assertEqual(mod(inp), m(inp))
|
|
|
|
_test(MyModule(), "foo")
|
|
_test(MyOuterModule(), "inner.foo")
|
|
|
|
def test_export_as_backend(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
def my_custom_backend(gm, example_inputs):
|
|
gm = (
|
|
torch.export.export(gm, tuple(example_inputs), strict=False)
|
|
.run_decompositions()
|
|
.module()
|
|
)
|
|
return gm
|
|
|
|
inp = (torch.randn(3, 3), torch.randn(3, 3))
|
|
new_res = torch.compile(f, backend=my_custom_backend)(*inp)
|
|
self.assertTrue(torch.allclose(f(*inp), new_res))
|
|
|
|
def test_nonstrict_retrace_preserves_metadata(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
inp = torch.randn(4, 4)
|
|
m = MyModule()
|
|
ep = torch.export.export(m, (inp,), {}, strict=False)
|
|
# retrace
|
|
ep2 = torch.export.export(ep.module(), (inp,), {}, strict=False)
|
|
|
|
for n1, n2 in zip(list(ep.graph.nodes), list(ep2.graph.nodes)):
|
|
self.assertEqual(n1.meta.get("stack_trace"), n2.meta.get("stack_trace"))
|
|
|
|
def test_fake_weights(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = torch.nn.Parameter(torch.randn(4, 4))
|
|
self.bar = torch.nn.Buffer(torch.randn(4, 4), persistent=False)
|
|
self.baz = torch.nn.Buffer(torch.randn(4, 4), persistent=True)
|
|
|
|
def forward(self, x):
|
|
return self.foo + x + self.bar + self.baz
|
|
|
|
fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=ShapeEnv(tracked_fakes=[])
|
|
)
|
|
with fake_mode:
|
|
m = MyModule()
|
|
inp = torch.randn(4, 4)
|
|
ep = export(m, (inp,))
|
|
# Can't compare outputs because the module has fake weights.
|
|
|
|
def test_fake_inputs(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = torch.nn.Parameter(torch.randn(4, 4))
|
|
|
|
def forward(self, x):
|
|
return self.foo + x
|
|
|
|
fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=ShapeEnv(tracked_fakes=[])
|
|
)
|
|
m = MyModule()
|
|
with fake_mode:
|
|
inp = torch.randn(4, 4)
|
|
|
|
ep = export(m, (inp,))
|
|
self.assertEqual(ep.module()(torch.ones(4, 4)), m(torch.ones(4, 4)))
|
|
|
|
def test_trace_under_fake(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = torch.nn.Parameter(torch.randn(4, 4))
|
|
|
|
def forward(self, x):
|
|
return self.foo + x
|
|
|
|
fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=ShapeEnv(tracked_fakes=[])
|
|
)
|
|
with fake_mode:
|
|
m = MyModule()
|
|
inp = torch.randn(4, 4)
|
|
# Can't use unqualified export() as it will attempt to deserialize
|
|
# under a new FakeTensorMode.
|
|
ep = torch.export.export(m, (inp,))
|
|
|
|
def test_compiling_state(self):
|
|
class TestModule1(torch.nn.Module):
|
|
def forward(self, x):
|
|
if torch._dynamo.is_compiling():
|
|
return x * 2
|
|
else:
|
|
return x * 3
|
|
|
|
class TestModule2(torch.nn.Module):
|
|
def forward(self, x):
|
|
if torch._utils.is_compiling():
|
|
return x * 2
|
|
else:
|
|
return x * 3
|
|
|
|
class TestModule3(torch.nn.Module):
|
|
def forward(self, x):
|
|
if torch.compiler.is_compiling():
|
|
return x * 2
|
|
else:
|
|
return x * 3
|
|
|
|
for m in [TestModule1(), TestModule2(), TestModule3()]:
|
|
input = torch.randn(5)
|
|
ep_strict = export(m, (input,), strict=True)
|
|
ep_non_strict = export(m, (input,), strict=False)
|
|
|
|
self.assertTrue(torch.allclose(input * 3, m(input)))
|
|
self.assertTrue(torch.allclose(input * 2, ep_strict.module()(input)))
|
|
self.assertTrue(torch.allclose(input * 2, ep_non_strict.module()(input)))
|
|
|
|
def test_user_input_and_buffer_mutation(self):
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = torch.nn.Buffer(torch.randn(4, 4))
|
|
|
|
def forward(self, x):
|
|
self.foo.add_(1)
|
|
x.add_(1)
|
|
return self.foo + x
|
|
|
|
mod = MyModule()
|
|
mod_copy = copy.deepcopy(mod)
|
|
ep = export(mod_copy, (torch.rand(4, 4),))
|
|
|
|
self.assertEqual(mod.foo, ep.module().foo)
|
|
self.assertEqual(mod(torch.ones(4, 4)), ep.module()(torch.ones(4, 4)))
|
|
|
|
def test_symint_tensor_return(self):
|
|
class Module(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.ops.testlib.returns_tensor_symint(x)[0]
|
|
|
|
self._test_export_same_as_eager(Module(), (torch.randn(4, 4),))
|
|
|
|
def test_custom_op_auto_functionalize(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x, z):
|
|
return torch.ops.testlib.foo(x, z)
|
|
|
|
inps = (torch.ones(5), torch.ones(5))
|
|
inps_for_export = (torch.ones(5), torch.ones(5))
|
|
inps_for_export_with_decomp = (torch.ones(5), torch.ones(5))
|
|
|
|
ep = torch.export.export(M(), inps_for_export)
|
|
x_new_eager, z_new_eager, legit_eager = M()(*inps)
|
|
x_new_export, z_new_export, legit_export = ep.module()(*inps_for_export)
|
|
self.assertTrue(torch.allclose(x_new_eager, x_new_export))
|
|
self.assertTrue(torch.allclose(z_new_eager, z_new_export))
|
|
self.assertTrue(torch.allclose(legit_eager, legit_export))
|
|
|
|
ep = ep.run_decompositions()
|
|
x_new_export, z_new_export, legit_export = ep.module()(
|
|
*inps_for_export_with_decomp
|
|
)
|
|
self.assertTrue(torch.allclose(x_new_eager, x_new_export))
|
|
self.assertTrue(torch.allclose(z_new_eager, z_new_export))
|
|
self.assertTrue(torch.allclose(legit_eager, legit_export))
|
|
|
|
def test_custom_op_auto_functionalize_pre_dispatch(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.ops.testlib.foo_mutated(x)
|
|
|
|
inps = (torch.ones(5),)
|
|
|
|
ep = torch.export.export(M(), inps)
|
|
self.assertExpectedInline(
|
|
str(ep.graph_module.code.strip()),
|
|
"""\
|
|
def forward(self, x):
|
|
cos = torch.ops.aten.cos.default(x)
|
|
auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.testlib.foo.default, x = x, z = cos); x = cos = None
|
|
getitem_3 = auto_functionalized[3]; auto_functionalized = None
|
|
cos_1 = torch.ops.aten.cos.default(getitem_3)
|
|
return (getitem_3, getitem_3, cos_1)""",
|
|
)
|
|
|
|
ep = torch.export._trace._export(M(), inps, pre_dispatch=True)
|
|
self.assertExpectedInline(
|
|
str(ep.graph_module.code.strip()),
|
|
"""\
|
|
def forward(self, x):
|
|
cos = torch.ops.aten.cos.default(x)
|
|
auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.testlib.foo.default, x = x, z = cos); x = cos = None
|
|
getitem_3 = auto_functionalized[3]; auto_functionalized = None
|
|
cos_1 = torch.ops.aten.cos.default(getitem_3)
|
|
return (getitem_3, getitem_3, cos_1)""",
|
|
)
|
|
|
|
def test_custom_op_auto_warn_pre_dispatch(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.ops.testlib.foo_functional(x)
|
|
|
|
inps = (torch.ones(5),)
|
|
|
|
ep = torch.export.export(M(), inps).run_decompositions()
|
|
self.assertExpectedInline(
|
|
str(ep.graph_module.code.strip()),
|
|
"""\
|
|
def forward(self, x):
|
|
cos = torch.ops.aten.cos.default(x)
|
|
cos_1 = torch.ops.aten.cos.default(x); x = None
|
|
auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.testlib.foo.default, x = cos, z = cos_1); cos = cos_1 = None
|
|
getitem_3 = auto_functionalized[3]; auto_functionalized = None
|
|
cos_2 = torch.ops.aten.cos.default(getitem_3); getitem_3 = None
|
|
return (cos_2,)""",
|
|
)
|
|
|
|
ep = torch.export._trace._export(M(), inps, pre_dispatch=True)
|
|
self.assertExpectedInline(
|
|
str(ep.graph_module.code.strip()),
|
|
"""\
|
|
def forward(self, x):
|
|
foo_functional = torch.ops.testlib.foo_functional.default(x); x = None
|
|
return (foo_functional,)""",
|
|
)
|
|
|
|
def test_placeholder_naming_collisions(self):
|
|
# test collisions between nested user inputs
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, x_foo, x_foo_0):
|
|
return x["foo"][0] + x_foo[0] + x_foo_0
|
|
|
|
inputs = (
|
|
{"foo": [torch.randn(4, 4)]},
|
|
(torch.randn(4, 4),),
|
|
torch.randn(4, 4),
|
|
)
|
|
ep = export(Foo(), inputs)
|
|
expected_names = ["x_foo_0", "x_foo_0_1", "x_foo_0_2"]
|
|
real_names = [spec.arg.name for spec in ep.graph_signature.input_specs]
|
|
self.assertEqual(expected_names, real_names)
|
|
|
|
# test collisions between user inputs and params, buffers, constants
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.param = torch.nn.Parameter(torch.randn(4))
|
|
self.alpha = torch.nn.Buffer(torch.randn(4), persistent=True)
|
|
self.beta = torch.nn.Buffer(torch.randn(4), persistent=False)
|
|
self.gamma = torch.randn(4)
|
|
|
|
def forward(self, p, b_alpha, b, c_gamma):
|
|
p = p["param"] + self.param
|
|
b = self.alpha + self.beta + b_alpha + b["beta"]
|
|
c = self.gamma + c_gamma
|
|
return p, b, c
|
|
|
|
inputs = (
|
|
{"param": torch.randn(4)},
|
|
torch.randn(4),
|
|
{"beta": torch.randn(4)},
|
|
torch.randn(4),
|
|
)
|
|
ep = export(Foo(), inputs)
|
|
expected_names = [ # user inputs should be prioritized, unprefixed
|
|
("p_param_1", InputKind.PARAMETER),
|
|
("b_alpha_1", InputKind.BUFFER),
|
|
("b_beta_1", InputKind.BUFFER),
|
|
("c_gamma_1", InputKind.CONSTANT_TENSOR),
|
|
("p_param", InputKind.USER_INPUT),
|
|
("b_alpha", InputKind.USER_INPUT),
|
|
("b_beta", InputKind.USER_INPUT),
|
|
("c_gamma", InputKind.USER_INPUT),
|
|
]
|
|
real_names = [
|
|
(spec.arg.name, spec.kind) for spec in ep.graph_signature.input_specs
|
|
]
|
|
self.assertEqual(expected_names, real_names)
|
|
|
|
# test collisions between user inputs & call_function nodes
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, mul, add, add_1):
|
|
return mul * mul + add * add_1
|
|
|
|
ep = export(Foo(), (torch.randn(4, 4), torch.randn(4, 4), torch.randn(4, 4)))
|
|
expected_names_and_ops = [
|
|
("mul", "placeholder"),
|
|
("add", "placeholder"),
|
|
("add_1", "placeholder"),
|
|
("mul_1", "call_function"),
|
|
("mul_2", "call_function"),
|
|
("add_2", "call_function"),
|
|
("output", "output"),
|
|
]
|
|
real_names_and_ops = [(node.name, node.op) for node in ep.graph.nodes]
|
|
self.assertEqual(expected_names_and_ops, real_names_and_ops)
|
|
|
|
@testing.expectedFailureRetraceability
|
|
def test_placeholder_naming_collisions_hoo_subgraphs(self):
|
|
# test collisions between user inputs, top-level nodes, and HOO subgraph nodes
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, mul, mul_1):
|
|
_mul = x * x
|
|
y = cond(
|
|
_mul.sum() > 0,
|
|
lambda x, y, z: x * y * z,
|
|
lambda x, y, z: x + y + z,
|
|
[_mul, mul, mul_1],
|
|
)
|
|
with torch.enable_grad():
|
|
y = y * y
|
|
return y
|
|
|
|
with torch.no_grad():
|
|
ep = torch.export._trace._export(
|
|
Foo(),
|
|
(torch.randn(4), torch.randn(4), torch.randn(4)),
|
|
pre_dispatch=True,
|
|
)
|
|
# test cond subgraph
|
|
expected_names_and_ops = [
|
|
("mul_2", "placeholder"),
|
|
("mul", "placeholder"),
|
|
("mul_1", "placeholder"),
|
|
("mul_3", "call_function"),
|
|
("mul_4", "call_function"),
|
|
("output", "output"),
|
|
]
|
|
real_names_and_ops = [
|
|
(node.name, node.op) for node in ep.graph_module.true_graph_0.graph.nodes
|
|
]
|
|
self.assertEqual(expected_names_and_ops, real_names_and_ops)
|
|
# test set_grad_enabled subgraph
|
|
expected_names_and_ops = [
|
|
("getitem", "placeholder"),
|
|
("mul_1", "call_function"),
|
|
("output", "output"),
|
|
]
|
|
real_names_and_ops = [
|
|
(node.name, node.op) for node in ep.graph_module.submod_1.graph.nodes
|
|
]
|
|
self.assertEqual(expected_names_and_ops, real_names_and_ops)
|
|
|
|
# test collisions between user inputs & higher order op subgraphs
|
|
# (please never do this)
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, input, true_graph, body_graph):
|
|
def map_body(x, y):
|
|
return x + y
|
|
|
|
x = map(map_body, input, body_graph[0])
|
|
x = x + true_graph[0] + true_graph[1]
|
|
x = cond(x.sum() > 0, lambda x: x * 2.0, lambda x: x + 2.0, [x])
|
|
x = cond(x.sum() > 0, lambda x: x * 2.0, lambda x: x + 2.0, [x])
|
|
return x
|
|
|
|
inputs = (
|
|
torch.randn(10, 4),
|
|
(torch.randn(4), torch.randn(4)),
|
|
(torch.randn(4),),
|
|
)
|
|
ep = export(Foo(), inputs)
|
|
expected_getattr_names = [
|
|
"body_graph_1",
|
|
"true_graph_2",
|
|
"false_graph_0",
|
|
"true_graph_3",
|
|
"false_graph_1",
|
|
]
|
|
real_getattr_names = [
|
|
node.name for node in ep.graph.nodes if node.op == "get_attr"
|
|
]
|
|
self.assertEqual(expected_getattr_names, real_getattr_names)
|
|
|
|
def test_constant_input_naming(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y, div="floor"):
|
|
return torch.div(x, y, rounding_mode=div)
|
|
|
|
f = Foo()
|
|
inputs = (torch.randn(4), torch.randn(4), "floor")
|
|
ep = export(f, inputs)
|
|
div_spec = ep.graph_signature.input_specs[2]
|
|
self.assertEqual(div_spec.arg.name, "div")
|
|
self.assertEqual(div_spec.arg.value, "floor")
|
|
|
|
def test_unbacked_deferred_runtime_retrace(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
y_sum = y.sin().sum()
|
|
with torch.no_grad():
|
|
a = x.item()
|
|
torch._check_is_size(a)
|
|
torch._check(a > 2)
|
|
torch._check(a < 6)
|
|
unbacked_shape = torch.ops.testlib.foo_unbacked(a)
|
|
return y + y_sum + unbacked_shape.sum()
|
|
|
|
inps = (torch.tensor(4), torch.randn(5, 5))
|
|
from torch.export import _trace
|
|
|
|
ep_pre = _trace._export(Foo(), inps, pre_dispatch=True, strict=False)
|
|
self.assertExpectedInline(
|
|
str(ep_pre.graph_module.submod_1.code).strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
item = torch.ops.aten.item.default(x); x = None
|
|
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(item); sym_constrain_range_for_size_default = None
|
|
ge_1 = item >= 3
|
|
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u1 >= 3 on node 'ge_1'"); ge_1 = _assert_scalar_default = None
|
|
le = item <= 5
|
|
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le, "Runtime assertion failed for expression u1 <= 5 on node 'le'"); le = _assert_scalar_default_1 = None
|
|
gt_1 = item > 2
|
|
_assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(gt_1, "Runtime assertion failed for expression 2 < u1 on node 'gt_1'"); gt_1 = _assert_scalar_default_2 = None
|
|
lt_1 = item < 6
|
|
_assert_scalar_default_3 = torch.ops.aten._assert_scalar.default(lt_1, "Runtime assertion failed for expression u1 < 6 on node 'lt_1'"); lt_1 = _assert_scalar_default_3 = None
|
|
foo_unbacked = torch.ops.testlib.foo_unbacked.default(item); item = None
|
|
return (foo_unbacked,)""",
|
|
)
|
|
ep_aot = ep_pre.run_decompositions()
|
|
self.assertExpectedInline(
|
|
str(ep_aot.graph_module.code).strip(),
|
|
"""\
|
|
def forward(self, x, y):
|
|
sin = torch.ops.aten.sin.default(y)
|
|
sum_1 = torch.ops.aten.sum.dim_IntList(sin, []); sin = None
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x); x = None
|
|
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense); sym_constrain_range_for_size_default = None
|
|
ge_1 = _local_scalar_dense >= 3
|
|
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u3 >= 3 on node 'ge_1'"); ge_1 = _assert_scalar_default = None
|
|
le_1 = _local_scalar_dense <= 5; _local_scalar_dense = None
|
|
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le_1, "Runtime assertion failed for expression u3 <= 5 on node 'le_1'"); le_1 = _assert_scalar_default_1 = None
|
|
full = torch.ops.aten.full.default([4, 4], 1, dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False)
|
|
add = torch.ops.aten.add.Tensor(y, sum_1); y = sum_1 = None
|
|
sum_2 = torch.ops.aten.sum.dim_IntList(full, []); full = None
|
|
add_1 = torch.ops.aten.add.Tensor(add, sum_2); add = sum_2 = None
|
|
return (add_1,)""",
|
|
)
|
|
|
|
def test_nested_dynamic_shapes_spec(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x):
|
|
(a0, a1), (b0, b1), (c0, c1, c2) = x
|
|
return a0 + a1 + b0 + b1 + c0 + c1 + c2
|
|
|
|
f = Foo()
|
|
inputs = (
|
|
(1, 2),
|
|
(
|
|
torch.randn(4, 4),
|
|
torch.randn(4, 4),
|
|
),
|
|
(
|
|
torch.randn(4, 4),
|
|
torch.randn(4, 4),
|
|
torch.randn(4, 4),
|
|
),
|
|
)
|
|
# make sure this gets parsed correctly as 7 individual inputs, not 3 tensors
|
|
dynamic_shapes = {
|
|
"x": (
|
|
(None, None),
|
|
(None, None),
|
|
(None, None, None),
|
|
)
|
|
}
|
|
export(f, (inputs,), dynamic_shapes=dynamic_shapes)
|
|
|
|
def test_disable_forced_specializations_ok(self):
|
|
# check that we don't force specialization, and defer to runtime asserts
|
|
# with allow_complex_guards_as_runtime_asserts=True to successfully export
|
|
# case 1: modulo guards
|
|
from torch.export import dims
|
|
|
|
class Mod4Reshape(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.reshape(x.shape[0] - 1, 4, -1) # Mod(s0*s1, 4*(s0-1)) = 0
|
|
|
|
inputs = (torch.randn(10, 72),)
|
|
dx, dy = dims("dx", "dy")
|
|
ep = torch.export._trace._export(
|
|
Mod4Reshape(),
|
|
inputs,
|
|
dynamic_shapes={"x": (dx, dy)},
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
out1 = ep.module()(torch.randn(8, 7))
|
|
self.assertEqual(out1.shape, torch.ones(7, 4, 2).shape)
|
|
out2 = ep.module()(torch.randn(12, 11))
|
|
self.assertEqual(out2.shape, torch.ones(11, 4, 3).shape)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Eq\(Mod\(s0\*s1, 4\*s0 \- 4\), 0\) on node 'eq.*'",
|
|
):
|
|
ep.module()(torch.randn(8, 8)) # fail
|
|
|
|
# case 2: 2d reshape
|
|
class FreeReshape(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return x.reshape([-1]) + y.reshape([-1]) + z # s0*s1 = s2*s3 = s4
|
|
|
|
inputs = (
|
|
torch.randn(6, 8),
|
|
torch.randn(3, 16),
|
|
torch.randn(48),
|
|
)
|
|
dynamic_shapes = {
|
|
"x": [Dim(f"dx{i}", min=2) for i in range(2)],
|
|
"y": [Dim(f"dy{i}", min=2) for i in range(2)],
|
|
"z": [Dim(f"dz{i}", min=4) for i in range(1)],
|
|
}
|
|
ep = torch.export._trace._export(
|
|
FreeReshape(),
|
|
inputs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
ep = export(FreeReshape(), inputs, dynamic_shapes=dynamic_shapes)
|
|
out1 = ep.module()(torch.randn(48, 1), torch.randn(4, 12), torch.randn(48))
|
|
self.assertEqual(out1.shape, torch.ones(48).shape)
|
|
out2 = ep.module()(torch.randn(5, 8), torch.randn(4, 10), torch.randn(40))
|
|
self.assertEqual(out2.shape, torch.ones(40).shape)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Eq\(s0\*s1, s2\*s3\) on node 'eq.*'",
|
|
): # fail only at runtime
|
|
ep.module()(torch.randn(5, 8), torch.randn(4, 5), torch.randn(30)) # fail
|
|
|
|
# case 3: 3d reshape (previously failing with different issue)
|
|
class Reshape3d(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x.reshape([-1]) + y # s0*s1*s2 = s3
|
|
|
|
inputs = (
|
|
torch.randn(4, 3, 2),
|
|
torch.randn(24),
|
|
)
|
|
dynamic_shapes = {
|
|
"x": (Dim("dx0", min=2), Dim("dx1", min=2), Dim("dx2", min=2)),
|
|
"y": (Dim("dy", min=8),),
|
|
}
|
|
ep = torch.export._trace._export(
|
|
Reshape3d(),
|
|
inputs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
out1 = ep.module()(torch.randn(9, 7, 2), torch.randn(126))
|
|
self.assertEqual(out1.shape, torch.ones(126).shape)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Eq\(s0\*s1\*s2, s3\) on node 'eq.*'",
|
|
): # fail only at runtime
|
|
ep.module()(torch.randn(4, 3, 2), torch.randn(10)) # fail
|
|
|
|
def test_disable_forced_specializations_errors(self):
|
|
# check error messages with hybrid symints
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, w, x, y, z):
|
|
return w.reshape([-1]) + x, y + z # simple: s0*s1 = s2, s3 = s4
|
|
|
|
inputs = (
|
|
torch.randn(3, 4),
|
|
torch.randn(12),
|
|
torch.randn(4),
|
|
torch.randn(4),
|
|
)
|
|
dynamic_shapes = {
|
|
"w": [Dim(f"dw{i}") for i in range(2)],
|
|
"x": [Dim(f"dx{i}") for i in range(1)],
|
|
"y": [Dim("dy")], # y & z incorrect, export is supposed to fail.
|
|
"z": [Dim("dz")], # suggested fix should be to match these up.
|
|
}
|
|
with self.assertRaisesRegex( # if disable=True, suggested fixes should not specialize.
|
|
torch._dynamo.exc.UserError,
|
|
r".*Constraints violated(.*\n)*"
|
|
r"Suggested fixes:(.*\n)*"
|
|
r".*dz = dy(.*\n)*",
|
|
) as msg:
|
|
export(
|
|
Foo(),
|
|
inputs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
strict=False,
|
|
)
|
|
|
|
# TODO requires_grad doesn't seem to work with serialization.
|
|
@testing.expectedFailureSerDer
|
|
def test_preserve_requires_grad_placeholders(self):
|
|
class Module(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.p = torch.nn.Parameter(torch.randn(3, 3))
|
|
|
|
def forward(self, x, y):
|
|
return self.p + x + y
|
|
|
|
m = Module()
|
|
ep = export(m, (torch.randn(3, 3), torch.randn(3, 3, requires_grad=True)))
|
|
placeholders = [
|
|
node for node in ep.graph_module.graph.nodes if node.op == "placeholder"
|
|
]
|
|
self.assertTrue(placeholders[0].meta["val"].requires_grad)
|
|
self.assertFalse(placeholders[1].meta["val"].requires_grad)
|
|
self.assertTrue(placeholders[2].meta["val"].requires_grad)
|
|
|
|
def test_reshape_view_helper(self):
|
|
# see: https://github.com/pytorch/pytorch/issues/126607
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(1), -1)
|
|
# torch/_refs/__init__/_reshape_view_helper() will generate guards on reshape kernel(?)
|
|
# Ne(s0, 20), so that reshape isn't no-op
|
|
# Ne(Mod(s0, 20), 0), so that reshape needs to first flatten [s0, 20, 16] -> [s0*20, 16]
|
|
# then split_dim -> [20, s0, 16]
|
|
# check that these show up in graph
|
|
return torch.nn.functional.softmax(
|
|
x, dim=0
|
|
) # don't think softmax actually creates any issues, just part of original test
|
|
|
|
model = Model()
|
|
x = torch.rand(1024, 20, 16)
|
|
dynamic_shapes = {"x": {0: Dim("batch")}}
|
|
ep = torch.export._trace._export(
|
|
model,
|
|
(x,),
|
|
dynamic_shapes=dynamic_shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Ne\(s0, 20\)",
|
|
):
|
|
ep.module()(torch.randn(20, 20, 16))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Ne\(Mod\(s0, 20\), 0\)",
|
|
):
|
|
ep.module()(torch.randn(400, 20, 16))
|
|
ep.module()(torch.randn(42, 20, 16))
|
|
|
|
def test_allow_explicit_guards_as_runtime_asserts(self):
|
|
# check that explicit guards are treated as runtime assertions
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
# check that negation of first guard also shows up as runtime assertion
|
|
if x.shape[0] == y.shape[0]: # False
|
|
return x + y
|
|
elif x.shape[0] == y.shape[0] ** 3: # False
|
|
return x + 2, y + 3
|
|
elif x.shape[0] ** 2 == y.shape[0] * 3: # True
|
|
return x * 2.0, y * 3.0
|
|
|
|
inputs = (torch.randn(6), torch.randn(12))
|
|
dynamic_shapes = {"x": [Dim("dx", min=4)], "y": [Dim("dy", min=4)]}
|
|
ep = torch.export._trace._export(
|
|
Foo(),
|
|
inputs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
# check forward pass
|
|
out0, out1 = ep.module()(torch.randn(9), torch.randn(27))
|
|
self.assertEqual(out0.shape, torch.ones(9).shape)
|
|
self.assertEqual(out1.shape, torch.ones(27).shape)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Ne\(s0, s1\)",
|
|
): # fail only at runtime
|
|
ep.module()(torch.randn(4), torch.randn(4)) # fail
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Ne\(s0, s1\**3\)",
|
|
):
|
|
ep.module()(torch.randn(64), torch.randn(4)) # fail
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression Eq\(s0\**2, 3\*s1\)",
|
|
):
|
|
ep.module()(torch.randn(10), torch.randn(9)) # fail
|
|
|
|
# this should be set with command line flag TORCH_DYNAMO_DO_NOT_EMIT_RUNTIME_ASSERTS=1,
|
|
# but dynamo checks that at torch import time, so setting os.environ makes no difference
|
|
# instead, manually patch dynamo config and test.
|
|
# test that setting this flag removes runtime asserts
|
|
from torch._dynamo import config as _dynamo_config
|
|
|
|
with _dynamo_config.patch(
|
|
do_not_emit_runtime_asserts=True,
|
|
):
|
|
ep = torch.export._trace._export(
|
|
Foo(),
|
|
inputs,
|
|
dynamic_shapes=dynamic_shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
).run_decompositions()
|
|
|
|
self.assertEqual(
|
|
[
|
|
node.target == torch.ops.aten._assert_scalar.default
|
|
for node in ep.graph.nodes
|
|
].count(True),
|
|
0,
|
|
)
|
|
|
|
def test_constant_aliasing(self):
|
|
class M1(torch.nn.Module):
|
|
def __init__(self, m2, foo):
|
|
super().__init__()
|
|
self.m2 = m2
|
|
self.foo = foo
|
|
|
|
def forward(self, x):
|
|
return x + self.foo + self.m2(x)
|
|
|
|
class M2(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.foo = torch.ones(3, 3)
|
|
|
|
def forward(self, x):
|
|
return x + self.foo
|
|
|
|
m2 = M2()
|
|
m1 = M1(m2, m2.foo)
|
|
inps = (torch.ones(3, 3),)
|
|
ep = torch.export.export(m1, inps, strict=False)
|
|
# check both constants appear in list
|
|
self.assertEqual(sorted(list(ep.constants)), ["foo", "m2.foo"])
|
|
# check only one input spec exists
|
|
num_constant_inputs = [
|
|
spec.kind == InputKind.CONSTANT_TENSOR
|
|
for spec in ep.graph_signature.input_specs
|
|
].count(True)
|
|
self.assertEqual(num_constant_inputs, 1)
|
|
# unflatten
|
|
unflattened = unflatten(ep)
|
|
self.assertTrue(torch.allclose(m1(*inps), unflattened(*inps)))
|
|
|
|
@testing.expectedFailureRetraceability
|
|
def test_unused_aliases(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
# param
|
|
self.alpha = torch.nn.Parameter(torch.randn(4))
|
|
self.beta = self.alpha
|
|
self.gamma = self.alpha
|
|
|
|
def forward(self, x):
|
|
return x + self.gamma
|
|
|
|
inps = (torch.randn(4),)
|
|
ep = export(Foo(), inps)
|
|
# placeholder nodes will be deduplicated in strict-mode,
|
|
# but check that all params still appear in state dict
|
|
for param in ["alpha", "beta", "gamma"]:
|
|
self.assertTrue(param in ep.state_dict)
|
|
|
|
# check that they also appear in unflattened state dict
|
|
unep = unflatten(ep)
|
|
for param in ["alpha", "beta", "gamma"]:
|
|
self.assertTrue(param in unep.state_dict())
|
|
|
|
def test_intermediate_shape_comp(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
z = torch.cat([x, x], dim=0)
|
|
w = z.repeat(y.shape[0])
|
|
return w.shape[0] + x.shape[0]
|
|
|
|
inputs = (torch.randn(6), torch.randn(4))
|
|
shapes = {
|
|
"x": (Dim("dx0"),),
|
|
"y": (Dim("dy"),),
|
|
}
|
|
ep = export(
|
|
Foo(),
|
|
inputs,
|
|
dynamic_shapes=shapes,
|
|
)
|
|
# test that shape is from size compute, not sym_size call
|
|
add_node = [node for node in ep.graph.nodes if node.target == operator.add][0]
|
|
self.assertTrue(add_node.args[0].target == operator.mul)
|
|
# test sym_size calls only happen on placeholders
|
|
sym_size_nodes = [
|
|
node
|
|
for node in ep.graph.nodes
|
|
if node.target == torch.ops.aten.sym_size.int
|
|
]
|
|
self.assertEqual(len(sym_size_nodes), 2)
|
|
self.assertTrue(
|
|
all(node.args[0].op == "placeholder" for node in sym_size_nodes)
|
|
)
|
|
# dynamo will DCE the repeat node, AOTAutograd will leave it
|
|
# training IR will also DCE due to retracing
|
|
repeat_nodes = [
|
|
node
|
|
for node in ep.graph.nodes
|
|
if node.target == torch.ops.aten.repeat.default
|
|
]
|
|
self.assertEqual(
|
|
len(repeat_nodes),
|
|
1
|
|
if is_non_strict_test(self._testMethodName)
|
|
and not is_training_ir_test(self._testMethodName)
|
|
else 0,
|
|
)
|
|
|
|
def test_checks_to_constrain_range(self):
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
n = y.item()
|
|
m = y.item()
|
|
torch._check_is_size(n)
|
|
torch._check(m >= 0)
|
|
torch._check(n >= 3)
|
|
torch._check(-m >= -9) # m <= 9
|
|
torch._check(n <= 6)
|
|
# n has range [3, 9]
|
|
return x[:n]
|
|
|
|
inputs = (torch.randn(10), torch.tensor(6))
|
|
ep = export(Foo(), inputs)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 2, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range.default", 0, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
ep = ep.run_decompositions()
|
|
FileCheck().check_count(
|
|
"torch.ops.aten._assert_scalar.default", 2, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range.default", 0, exactly=True
|
|
).run(ep.graph_module.code)
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
# check runtime
|
|
ep.module()(torch.randn(10), torch.tensor(5))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression u[\d+] \>\= 3",
|
|
):
|
|
ep.module()(torch.randn(10), torch.tensor(2))
|
|
|
|
def test_cse_for_symint(self):
|
|
class Foo(torch.nn.Module):
|
|
# check sym ops only get computed once
|
|
def forward(self, x, y):
|
|
if (
|
|
x.shape[0] ** 2 - y.shape[0] ** 2 >= 4 # 16
|
|
and x.shape[0] ** 2 - y.shape[0] ** 2 <= 20
|
|
and x.shape[0] ** 2 - y.shape[0] ** 2 != 15
|
|
):
|
|
return x * 2, y * 2
|
|
|
|
inputs = (torch.randn(5), torch.randn(3))
|
|
shapes = {"x": (Dim("dx"),), "y": (Dim("dy"),)}
|
|
ep = torch.export._trace._export(
|
|
Foo(),
|
|
inputs,
|
|
dynamic_shapes=shapes,
|
|
allow_complex_guards_as_runtime_asserts=True,
|
|
)
|
|
# count 2 pow nodes, 2 sym_size.int nodes
|
|
self.assertEqual(
|
|
[node.target for node in ep.graph.nodes].count(
|
|
operator.pow,
|
|
),
|
|
2,
|
|
)
|
|
FileCheck().check_count("torch.ops.aten.sym_size.int", 2, exactly=True).run(
|
|
ep.graph_module.code
|
|
)
|
|
|
|
ep = ep.run_decompositions()
|
|
self.assertEqual(
|
|
[node.target for node in ep.graph.nodes].count(
|
|
operator.pow,
|
|
),
|
|
2,
|
|
)
|
|
FileCheck().check_count("torch.ops.aten.sym_size.int", 2, exactly=True).run(
|
|
ep.graph_module.code
|
|
)
|
|
|
|
def test_slice_with_floordiv(self):
|
|
# slice operation emits runtime assert s0//2 <= s1
|
|
class M1(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
d = x.size(0) // 2
|
|
return y[d:]
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.m1 = M1()
|
|
|
|
def forward(self, x, y):
|
|
d = x.size(0) // 2
|
|
m1_res = self.m1(x, y)
|
|
return y[d:] + m1_res
|
|
|
|
inputs = (torch.ones(10), torch.ones(10))
|
|
d0 = torch.export.Dim("d0", max=2048)
|
|
d1 = torch.export.Dim("d1", max=2048)
|
|
ep = export(
|
|
M(),
|
|
inputs,
|
|
dynamic_shapes=((d0,), (d1,)),
|
|
)
|
|
ep.module()(torch.ones(8), torch.ones(4))
|
|
ep.module()(torch.ones(8), torch.ones(5))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"Runtime assertion failed for expression \(s0//2\) \<\= s1",
|
|
):
|
|
ep.module()(torch.ones(10), torch.ones(4))
|
|
|
|
def test_split_const_gm_with_lifted_constants(self):
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.w_pre = torch.randn(4, 4)
|
|
self.b = torch.randn(4)
|
|
|
|
def forward(self, x):
|
|
w_transpose = torch.transpose(self.w_pre, 0, 1)
|
|
w_relu = torch.nn.functional.relu(w_transpose)
|
|
w = w_relu + self.b
|
|
return torch.matmul(x, w)
|
|
|
|
example_inputs = (torch.randn(4, 4),)
|
|
mod = Model()
|
|
ep = torch.export.export(mod, example_inputs)
|
|
new_gm = copy.deepcopy(ep.graph_module)
|
|
new_sig = copy.deepcopy(ep.graph_signature)
|
|
placeholder_nodes = [
|
|
node for node in new_gm.graph.nodes if node.op == "placeholder"
|
|
]
|
|
constants = {**ep.state_dict, **ep.constants}
|
|
lifted_constants = {
|
|
n.name: constants[spec.target]
|
|
for n, spec in zip(placeholder_nodes, new_sig.input_specs)
|
|
if spec.target is not None
|
|
}
|
|
const_gm, _ = split_const_gm(new_gm, lifted_constants)
|
|
counter = 0
|
|
for node in const_gm.graph.nodes:
|
|
if node.op == "call_function":
|
|
counter += 1
|
|
self.assertTrue(counter > 0)
|
|
test_input = torch.randn(4, 4)
|
|
expected = new_gm(None, None, test_input)[0]
|
|
actual = mod(test_input)
|
|
self.assertEqual(actual, expected)
|
|
const_gm, _ = split_const_gm(ep.graph_module, lifted_constants, lambda x: True)
|
|
counter = 0
|
|
for node in const_gm.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertTrue(False)
|
|
|
|
|
|
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
|
|
class TestOneOffModelExportResult(TestCase):
|
|
def test_scaled_dot_product_attention_cpu(self):
|
|
"""
|
|
This test makes sure we are always getting the same decomposition result for SDPA.
|
|
As of now _scaled_dot_product_flash_attention_for_cpu is expected to show up in
|
|
export() result. Some downstream backend then further decompose it into core ATen
|
|
ops in torch/_decomp/decompositions.py (search for
|
|
_scaled_dot_product_flash_attention_for_cpu).
|
|
|
|
Export is decomposing based on the CompositeImplicitAutograd kernel implementation
|
|
of SDPA. If this test fails, it means the kernel is being modified. In this case
|
|
we strongly encourage you to change the decomposition rule under
|
|
torch/_decomp/decompositions.py along with the kernel changes, so all of the
|
|
downstream backends are not being affected.
|
|
"""
|
|
|
|
class ScaledDotProductAttention(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, q, k, v):
|
|
attn_output = F.scaled_dot_product_attention(
|
|
q, k, v, None, dropout_p=0.0, is_causal=True
|
|
)
|
|
return attn_output
|
|
|
|
q = torch.randn(1, 1, 8, 8, device="cpu")
|
|
k = torch.randn(1, 1, 8, 8, device="cpu")
|
|
v = torch.randn(1, 1, 8, 8, device="cpu")
|
|
|
|
from torch.nn.attention import SDPBackend
|
|
|
|
with torch.nn.attention.sdpa_kernel([SDPBackend.MATH]):
|
|
ep = torch.export.export(ScaledDotProductAttention(), (q, k, v))
|
|
print(ep.graph)
|
|
ep.run_decompositions()
|
|
print(ep.graph)
|
|
|
|
# self.assertExpectedInline(ep.graph_module.code.strip(), """\
|
|
# def forward(self, arg0_1, arg1_1, arg2_1):
|
|
# _scaled_dot_product_flash_attention_for_cpu = torch.ops.aten._scaled_dot_product_flash_attention_for_cpu.default(arg0_1, arg1_1, arg2_1, 0.0, True); arg0_1 = arg1_1 = arg2_1 = None
|
|
# getitem = _scaled_dot_product_flash_attention_for_cpu[0]; _scaled_dot_product_flash_attention_for_cpu = None
|
|
# return (getitem,)""")
|
|
|
|
@unittest.skipIf(
|
|
not PLATFORM_SUPPORTS_FLASH_ATTENTION,
|
|
"Can't run fused SDPA on this platform",
|
|
)
|
|
def test_scaled_dot_product_attention_cuda(self):
|
|
"""
|
|
This test makes sure we are always getting the same decomposition result for SDPA.
|
|
As of now _scaled_dot_product_flash_attention is expected to show up in
|
|
export() result (GPU tensors are given). Currently there's no downstream
|
|
backend relies on this export result so if this test fails, feel free to
|
|
change it to the latest export() result.
|
|
"""
|
|
|
|
class ScaledDotProductAttention(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, q, k, v):
|
|
attn_output = F.scaled_dot_product_attention(
|
|
q, k, v, None, dropout_p=0.0, is_causal=True
|
|
)
|
|
return attn_output
|
|
|
|
q = torch.randn(1, 16, 16, 64, dtype=torch.bfloat16, device="cuda")
|
|
k = torch.randn(1, 16, 16, 64, dtype=torch.bfloat16, device="cuda")
|
|
v = torch.randn(1, 16, 16, 64, dtype=torch.bfloat16, device="cuda")
|
|
|
|
ep = torch.export.export(
|
|
ScaledDotProductAttention(), (q, k, v)
|
|
).run_decompositions()
|
|
code_str = """\
|
|
def forward(self, q, k, v):
|
|
_scaled_dot_product_flash_attention = torch.ops.aten._scaled_dot_product_flash_attention.default(q, k, v, 0.0, True, scale = 0.125); q = k = v = None
|
|
getitem = _scaled_dot_product_flash_attention[0]; _scaled_dot_product_flash_attention = None
|
|
return (getitem,)"""
|
|
if SM90OrLater:
|
|
code_str = """\
|
|
def forward(self, q, k, v):
|
|
_scaled_dot_product_cudnn_attention = torch.ops.aten._scaled_dot_product_cudnn_attention.default(q, k, v, None, False, 0.0, True); q = k = v = None
|
|
getitem = _scaled_dot_product_cudnn_attention[0]; _scaled_dot_product_cudnn_attention = None
|
|
return (getitem,)"""
|
|
self.assertExpectedInline(
|
|
ep.graph_module.code.strip(),
|
|
code_str,
|
|
)
|
|
|
|
def test_int_list_output(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
return [((1, 3), [x + x, x * x])]
|
|
|
|
ep = torch.export.export(M(), (torch.ones(2, 3),))
|
|
res = ep.module()(torch.ones(2, 3))
|
|
self.assertEqual(res[0][0], (1, 3))
|
|
|
|
def test_primitive_constant_output(self):
|
|
class Z(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
with torch.no_grad():
|
|
return y * x, "moo"
|
|
|
|
ep = torch.export.export(Z(), (torch.tensor(3), 5))
|
|
res = ep.module()(torch.tensor(4), 5)
|
|
self.assertEqual(res[0], torch.tensor(20))
|
|
self.assertEqual(res[1], "moo")
|
|
|
|
class B(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return y * x, y
|
|
|
|
ep = torch.export.export(B(), (torch.tensor(3), 5))
|
|
res = ep.module()(torch.tensor(4), 5)
|
|
self.assertEqual(res[0], torch.tensor(20))
|
|
self.assertEqual(res[1], 5)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
escape("Expected input at *args[1] to be equal to 5, but got 20"),
|
|
):
|
|
res = ep.module()(torch.tensor(4), 20)
|
|
|
|
class F(torch.nn.Module):
|
|
def forward(self, x):
|
|
# return a constant of primitive type
|
|
y = 5
|
|
return y * x, y
|
|
|
|
ep = torch.export.export(F(), (torch.tensor(3),))
|
|
res = ep.module()(torch.tensor(4))
|
|
self.assertEqual(res[0], torch.tensor(20))
|
|
self.assertEqual(res[1], 5)
|
|
|
|
class Q(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return y * x, y - 1
|
|
|
|
ep = torch.export.export(Q(), (torch.tensor(3), 5))
|
|
res = ep.module()(torch.tensor(4), 5)
|
|
self.assertEqual(res[0], torch.tensor(20))
|
|
self.assertEqual(res[1], 4)
|
|
|
|
def test_unbacked_sdpa(self):
|
|
import torch
|
|
from torch.nn.attention import sdpa_kernel, SDPBackend
|
|
from torch.nn.functional import scaled_dot_product_attention
|
|
|
|
class Module(torch.nn.Module):
|
|
def forward(
|
|
self, query: torch.Tensor, cache: torch.Tensor, start_pos: torch.Tensor
|
|
) -> torch.Tensor:
|
|
# x.sizes(): 1, 128, 16, 128
|
|
sp = start_pos.item()
|
|
torch._check_is_size(sp)
|
|
torch._check(sp >= 0)
|
|
torch._check(sp <= 126)
|
|
key = cache[:, : sp + 1, :, :] # 1, sp+1, 16, 128
|
|
value = cache[:, : sp + 1, :, :] # 1, sp+1, 16, 128
|
|
query = query.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
|
key = key.transpose(1, 2)
|
|
value = value.transpose(1, 2)
|
|
# https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/transformers/attention.cpp#L732
|
|
return scaled_dot_product_attention(query, key, value)
|
|
|
|
cache = torch.randn(1, 128, 16, 128, dtype=torch.float16)
|
|
query = torch.randn(1, 1, 16, 128, dtype=torch.float16)
|
|
start_pos = torch.tensor([0])
|
|
with sdpa_kernel(SDPBackend.MATH), torch.no_grad():
|
|
ep = torch.export.export(Module(), (query, cache, start_pos))
|
|
args = (query, cache, start_pos)
|
|
self.assertEqual(ep.module()(*args), Module()(*args))
|
|
args = (query, cache, torch.tensor([3]))
|
|
self.assertEqual(ep.module()(*args), Module()(*args))
|
|
args = (query, cache, torch.tensor([126]))
|
|
self.assertEqual(ep.module()(*args), Module()(*args))
|
|
|
|
def test_none_input_output(self):
|
|
class Z(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x * x
|
|
|
|
ep = torch.export.export(Z(), (torch.tensor(3), None))
|
|
res = ep.module()(torch.tensor(4), None)
|
|
self.assertEqual(res, torch.tensor(16))
|
|
|
|
class B(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x * x, y
|
|
|
|
ep = torch.export.export(B(), (torch.tensor(3), None))
|
|
res = ep.module()(torch.tensor(4), None)
|
|
self.assertEqual(res[0], torch.tensor(16))
|
|
self.assertEqual(res[1], None)
|
|
|
|
decomp = ep.run_decompositions()
|
|
gm = decomp.module()
|
|
res = gm(torch.tensor(4), None)
|
|
self.assertEqual(res[0], torch.tensor(16))
|
|
self.assertEqual(res[1], None)
|
|
|
|
def test_print(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
print("start")
|
|
x1 = x + x
|
|
print(x1)
|
|
x2 = x1 * x1
|
|
print(1, 2, 3)
|
|
x3 = x2 + x2
|
|
return (x1, x3)
|
|
|
|
gm = export(M(), (torch.randn(3, 3),)).graph_module
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
add = torch.ops.aten.add.Tensor(x, x); x = None
|
|
mul = torch.ops.aten.mul.Tensor(add, add)
|
|
add_1 = torch.ops.aten.add.Tensor(mul, mul); mul = None
|
|
return (add, add_1)""",
|
|
)
|
|
|
|
def test_logging_logger(self):
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
logger.log("start")
|
|
x1 = x + x
|
|
logger.debug(x1)
|
|
x2 = x1 * x1
|
|
logger.info(1, 2, 3)
|
|
x3 = x2 + x2
|
|
return (x1, x3)
|
|
|
|
gm = export(M(), (torch.randn(3, 3),)).graph_module
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
add = torch.ops.aten.add.Tensor(x, x); x = None
|
|
mul = torch.ops.aten.mul.Tensor(add, add)
|
|
add_1 = torch.ops.aten.add.Tensor(mul, mul); mul = None
|
|
return (add, add_1)""",
|
|
)
|
|
|
|
@unittest.skipIf(not TEST_TRANSFORMERS, "No transformers")
|
|
def test_hf_logging_logger(self):
|
|
import transformers
|
|
|
|
logger = transformers.utils.logging.get_logger(__name__)
|
|
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
logger.warning_once("start")
|
|
x1 = x + x
|
|
x2 = x1 * x1
|
|
x3 = x2 + x2
|
|
return (x1, x3)
|
|
|
|
gm = export(M(), (torch.randn(3, 3),)).graph_module
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
add = torch.ops.aten.add.Tensor(x, x); x = None
|
|
mul = torch.ops.aten.mul.Tensor(add, add)
|
|
add_1 = torch.ops.aten.add.Tensor(mul, mul); mul = None
|
|
return (add, add_1)""",
|
|
)
|
|
|
|
def test_warning(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
warnings.warn("moo")
|
|
res = x + x
|
|
warnings.warn(f"{res}")
|
|
return res
|
|
|
|
gm = export(M(), (torch.randn(3, 3),)).graph_module
|
|
self.assertExpectedInline(
|
|
gm.code.strip(),
|
|
"""\
|
|
def forward(self, x):
|
|
add = torch.ops.aten.add.Tensor(x, x); x = None
|
|
return (add,)""",
|
|
)
|
|
|
|
def test_constant_fqn(self):
|
|
class Nested(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.constant = torch.rand(2, 3)
|
|
self.parameter = torch.nn.Parameter(torch.rand(2, 3))
|
|
|
|
def forward(self, x):
|
|
return x + self.constant
|
|
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.nested = Nested()
|
|
|
|
def forward(self, x):
|
|
return self.nested(x) + self.nested.constant + self.nested.parameter
|
|
|
|
m = Mod()
|
|
ep = export(m, (torch.rand(2, 3),), strict=True)
|
|
self.assertEqual(ep.constants["nested.constant"], m.nested.constant)
|
|
self.assertEqual(ep.module()(torch.ones(2, 3)), m(torch.ones(2, 3)))
|
|
|
|
def test_constant_name(self):
|
|
class Nested(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.constant = torch.rand(2, 3)
|
|
self.parameter = torch.nn.Parameter(torch.rand(2, 3))
|
|
|
|
def forward(self, x):
|
|
return x + self.constant
|
|
|
|
class Mod(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.nested_1 = Nested()
|
|
self.nested_2 = Nested()
|
|
|
|
def forward(self, x):
|
|
return (
|
|
self.nested_1(x)
|
|
+ self.nested_2(x)
|
|
+ self.nested_1.constant
|
|
+ self.nested_2.constant
|
|
+ self.nested_1.parameter
|
|
+ self.nested_2.parameter
|
|
)
|
|
|
|
m = Mod()
|
|
ep = export(m, (torch.rand(2, 3),), strict=False)
|
|
self.assertEqual(ep.module()(torch.ones(2, 3)), m(torch.ones(2, 3)))
|
|
|
|
# check constant fqn when there are multiple instances of the same class
|
|
self.assertEqual(ep.constants["nested_1.constant"], m.nested_1.constant)
|
|
self.assertEqual(ep.constants["nested_2.constant"], m.nested_2.constant)
|
|
|
|
# check constant_name in the graph
|
|
placeholders = [
|
|
node for node in ep.graph_module.graph.nodes if node.op == "placeholder"
|
|
]
|
|
self.assertEqual(len(placeholders), 5)
|
|
self.assertTrue(all(ph.name == ph.target for ph in placeholders))
|
|
# suffix should be added to duplicated constant_name
|
|
self.assertEqual(placeholders[2].name, "c_nested_1_constant")
|
|
self.assertEqual(placeholders[3].name, "c_nested_2_constant")
|
|
|
|
def test_nested_retrace(self):
|
|
class Nested(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.param = torch.nn.Parameter(torch.randn(3))
|
|
|
|
def forward(self, x):
|
|
return x + self.param
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.nested = Nested()
|
|
|
|
def forward(self, x):
|
|
return x + self.nested(x)
|
|
|
|
# first export
|
|
foo = Foo().to("meta")
|
|
inputs = (torch.ones(3, device="meta"),)
|
|
foo(*inputs)
|
|
ep = torch.export.export(foo, inputs, strict=False)
|
|
|
|
# second export
|
|
foo_1 = ep.module()
|
|
ep_1 = torch.export.export(foo_1, inputs, strict=False)
|
|
|
|
for node1, node2 in zip(ep.graph.nodes, ep_1.graph.nodes):
|
|
nn_module_stack_1 = node1.meta.get("nn_module_stack", None)
|
|
nn_module_stack_2 = node2.meta.get("nn_module_stack", None)
|
|
|
|
if nn_module_stack_1 is None:
|
|
self.assertTrue(nn_module_stack_2 is None)
|
|
else:
|
|
for v1, v2 in zip(
|
|
nn_module_stack_1.values(), nn_module_stack_2.values()
|
|
):
|
|
self.assertEqual(v1, v2)
|
|
|
|
|
|
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
|
|
class TestExportCustomClass(TorchTestCase):
|
|
def setUp(self):
|
|
if IS_FBCODE:
|
|
lib_file_path = "//caffe2/test/cpp/jit:test_custom_class_registrations"
|
|
elif IS_SANDCASTLE or IS_MACOS:
|
|
raise unittest.SkipTest("non-portable load_library call used in test")
|
|
elif IS_WINDOWS:
|
|
lib_file_path = find_library_location("torchbind_test.dll")
|
|
else:
|
|
lib_file_path = find_library_location("libtorchbind_test.so")
|
|
torch.ops.load_library(str(lib_file_path))
|
|
|
|
def test_lift_custom_obj(self):
|
|
# TODO: fix this test once custom class tracing is implemented
|
|
|
|
custom_obj = torch.classes._TorchScriptTesting._PickleTester([3, 4])
|
|
|
|
class Foo(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + x
|
|
|
|
f = Foo()
|
|
|
|
inputs = (torch.zeros(4, 4),)
|
|
ep = export(f, inputs)
|
|
|
|
# Replace one of the values with an instance of our custom class
|
|
for node in ep.graph.nodes:
|
|
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
|
|
with ep.graph.inserting_before(node):
|
|
setattr(ep.graph_module, "custom_obj", custom_obj)
|
|
getattr_node = ep.graph.get_attr("custom_obj")
|
|
# Copy over an nn_module_stack as they are required.
|
|
getattr_node.meta["nn_module_stack"] = node.meta["nn_module_stack"]
|
|
custom_node = ep.graph.call_function(
|
|
torch.ops._TorchScriptTesting.take_an_instance.default,
|
|
(getattr_node,),
|
|
)
|
|
custom_node.meta["val"] = torch.ones(4, 4)
|
|
# Copy over an nn_module_stack as they are required.
|
|
custom_node.meta["nn_module_stack"] = node.meta["nn_module_stack"]
|
|
custom_node.meta["torch_fn"] = (
|
|
"custom_op",
|
|
"torch.ops._TorchScriptTesting.take_an_instance.default",
|
|
)
|
|
arg0, _ = node.args
|
|
node.args = (arg0, custom_node)
|
|
|
|
from torch._export.passes.lift_constants_pass import lift_constants_pass
|
|
from torch._export.serde.serialize import deserialize, serialize
|
|
|
|
constants = lift_constants_pass(ep.graph_module, ep.graph_signature, {})
|
|
for k, v in constants.items():
|
|
assert k not in ep.constants
|
|
ep._constants[k] = v
|
|
serialized_vals = serialize(ep)
|
|
deserialized_ep = deserialize(serialized_vals)
|
|
|
|
for node in deserialized_ep.graph.nodes:
|
|
if (
|
|
node.op == "call_function"
|
|
and node.target
|
|
== torch.ops._TorchScriptTesting.take_an_instance.default
|
|
):
|
|
arg = node.args[0]
|
|
self.assertTrue(arg.op == "placeholder")
|
|
|
|
def test_tolist_nonstrict_output(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
x.tolist()
|
|
|
|
ep = torch.export.export(M(), (torch.ones(3),), strict=False)
|
|
|
|
def test_preserve_non_cia_op(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.nn.functional.elu(x)
|
|
|
|
ep = export(M(), (torch.randn(2, 3, 4, 5),))
|
|
FileCheck().check_count("torch.ops.aten.elu.default", 1, exactly=True).run(
|
|
ep.graph_module.code
|
|
)
|
|
|
|
ep = ep.run_decompositions(
|
|
decomp_table=get_decompositions([torch.ops.aten.elu.default]),
|
|
_preserve_ops=[torch.ops.aten.elu.default],
|
|
)
|
|
FileCheck().check_count("torch.ops.aten.elu.default", 1, exactly=True).run(
|
|
ep.graph_module.code
|
|
)
|
|
|
|
def test_preserve_cia_op(self):
|
|
class StaticResizeBilinear2dModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
a = torch.nn.functional.interpolate(
|
|
x,
|
|
size=(x.shape[2] * 2, x.shape[3] * 3),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
antialias=False,
|
|
)
|
|
return a
|
|
|
|
ep = export(StaticResizeBilinear2dModule(), (torch.randn(2, 3, 4, 5),))
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.upsample_bilinear2d.vec", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
decomp_table = get_decompositions([torch.ops.aten.upsample_bilinear2d.vec])
|
|
ep = ep.run_decompositions(
|
|
decomp_table=decomp_table,
|
|
_preserve_ops=[torch.ops.aten.upsample_bilinear2d.vec],
|
|
)
|
|
assert torch.ops.aten.upsample_bilinear2d.vec in decomp_table
|
|
FileCheck().check_count(
|
|
"torch.ops.aten.upsample_bilinear2d.vec", 1, exactly=True
|
|
).run(ep.graph_module.code)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|