pytorch/torch/testing/_internal/opinfo/utils.py

149 lines
4.5 KiB
Python

import collections
import warnings
from functools import partial
import torch
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_dtype import (
_dispatch_dtypes,
all_types,
all_types_and,
all_types_and_complex,
all_types_and_complex_and,
all_types_and_half,
complex_types,
floating_and_complex_types,
floating_and_complex_types_and,
floating_types,
floating_types_and,
floating_types_and_half,
integral_types,
integral_types_and,
)
COMPLETE_DTYPES_DISPATCH = (
all_types,
all_types_and_complex,
all_types_and_half,
floating_types,
floating_and_complex_types,
floating_types_and_half,
integral_types,
complex_types,
)
EXTENSIBLE_DTYPE_DISPATCH = (
all_types_and_complex_and,
floating_types_and,
floating_and_complex_types_and,
integral_types_and,
all_types_and,
)
# Better way to acquire devices?
DEVICES = ["cpu"] + (["cuda"] if TEST_CUDA else [])
class _dynamic_dispatch_dtypes(_dispatch_dtypes):
# Class to tag the dynamically generated types.
pass
def get_supported_dtypes(op, sample_inputs_fn, device_type):
# Returns the supported dtypes for the given operator and device_type pair.
assert device_type in ["cpu", "cuda"]
if not TEST_CUDA and device_type == "cuda":
warnings.warn(
"WARNING: CUDA is not available, empty_dtypes dispatch will be returned!"
)
return _dynamic_dispatch_dtypes(())
supported_dtypes = set()
for dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half):
try:
samples = sample_inputs_fn(op, device_type, dtype, False)
except RuntimeError:
# If `sample_inputs_fn` doesn't support sampling for a given
# `dtype`, we assume that the `dtype` is not supported.
# We raise a warning, so that user knows that this was the case
# and can investigate if there was an issue with the `sample_inputs_fn`.
warnings.warn(
f"WARNING: Unable to generate sample for device:{device_type} and dtype:{dtype}"
)
continue
# We assume the dtype is supported
# only if all samples pass for the given dtype.
supported = True
for sample in samples:
try:
op(sample.input, *sample.args, **sample.kwargs)
except RuntimeError as re:
# dtype is not supported
supported = False
break
if supported:
supported_dtypes.add(dtype)
return _dynamic_dispatch_dtypes(supported_dtypes)
def dtypes_dispatch_hint(dtypes):
# Function returns the appropriate dispatch function (from COMPLETE_DTYPES_DISPATCH and EXTENSIBLE_DTYPE_DISPATCH)
# and its string representation for the passed `dtypes`.
return_type = collections.namedtuple("return_type", "dispatch_fn dispatch_fn_str")
# CUDA is not available, dtypes will be empty.
if len(dtypes) == 0:
return return_type((), str(tuple()))
set_dtypes = set(dtypes)
for dispatch in COMPLETE_DTYPES_DISPATCH:
# Short circuit if we get an exact match.
if set(dispatch()) == set_dtypes:
return return_type(dispatch, dispatch.__name__ + "()")
chosen_dispatch = None
chosen_dispatch_score = 0.0
for dispatch in EXTENSIBLE_DTYPE_DISPATCH:
dispatch_dtypes = set(dispatch())
if not dispatch_dtypes.issubset(set_dtypes):
continue
score = len(dispatch_dtypes)
if score > chosen_dispatch_score:
chosen_dispatch_score = score
chosen_dispatch = dispatch
# If user passed dtypes which are lower than the lowest
# dispatch type available (not likely but possible in code path).
if chosen_dispatch is None:
return return_type((), str(dtypes))
return return_type(
partial(dispatch, *tuple(set(dtypes) - set(dispatch()))),
dispatch.__name__ + str(tuple(set(dtypes) - set(dispatch()))),
)
def is_dynamic_dtype_set(op):
# Detect if the OpInfo entry acquired dtypes dynamically
# using `get_supported_dtypes`.
return op.dynamic_dtypes
def str_format_dynamic_dtype(op):
fmt_str = """
OpInfo({name},
dtypes={dtypes},
dtypesIfCUDA={dtypesIfCUDA},
)
""".format(
name=op.name,
dtypes=dtypes_dispatch_hint(op.dtypes).dispatch_fn_str,
dtypesIfCUDA=dtypes_dispatch_hint(op.dtypesIfCUDA).dispatch_fn_str,
)
return fmt_str