mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
This PR allows transposes to be fused with other operations. If a fusion group is formed only from operations that just manipulate metadata in PyTorch (transpose, view, etc.) then this group is not sent to nvFuser. On top of that if we have converted to `nvprims` but then decided to not form a fusion group we modify the graph use `prim.impl_aten` attribute instead of calling `prim(*args, **kwargs)` that has a higher overhead. cc @kevinstephano @jjsjann123 Pull Request resolved: https://github.com/pytorch/pytorch/pull/86967 Approved by: https://github.com/jjsjann123, https://github.com/SherlockNoMad
420 lines
14 KiB
Python
420 lines
14 KiB
Python
import functools
|
|
from contextlib import nullcontext
|
|
from typing import Any, Callable, Dict, Sequence
|
|
from warnings import warn
|
|
|
|
import torch
|
|
|
|
import torch._decomp
|
|
import torch._prims
|
|
|
|
import torch._refs
|
|
import torch._refs.nn
|
|
import torch._refs.nn.functional
|
|
import torch._refs.special
|
|
import torch.overrides
|
|
from torch._prims.nvfuser_executor import NvfuserPrimOperatorSupport
|
|
|
|
from torch._prims_common import torch_function_passthrough
|
|
from torch.fx.experimental.proxy_tensor import get_isolated_graphmodule
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def torch_to_refs_map():
|
|
"""
|
|
Mapping of torch API functions to torch._refs functions.
|
|
E.g. torch_to_refs_map()[torch.add] == torch._refs.add
|
|
"""
|
|
modules = [
|
|
(torch, torch._refs),
|
|
(torch.nn, torch._refs.nn),
|
|
(torch.nn.functional, torch._refs.nn.functional),
|
|
(torch.special, torch._refs.special),
|
|
(torch.fft, torch._refs.fft),
|
|
(torch.linalg, torch._refs.linalg),
|
|
]
|
|
r: Dict[Any, Any] = {
|
|
torch.Tensor.__invert__: torch._refs.bitwise_not,
|
|
torch.Tensor.__xor__: torch._refs.bitwise_xor,
|
|
torch.Tensor.__and__: torch._refs.bitwise_and,
|
|
torch.Tensor.__or__: torch._refs.bitwise_or,
|
|
torch.Tensor.__eq__: torch._refs.eq,
|
|
torch.Tensor.__rsub__: torch._refs.rsub,
|
|
torch.Tensor.__rtruediv__: torch._refs.rtruediv,
|
|
torch.Tensor.__floordiv__: torch._refs.floor_divide,
|
|
torch.Tensor.__rfloordiv__: torch._refs.rfloordiv,
|
|
torch.Tensor.__pow__: torch._refs.pow,
|
|
torch.Tensor.__rpow__: torch._refs.rpow,
|
|
torch.Tensor.new_empty: torch._refs.new_empty,
|
|
torch.Tensor.new_full: torch._refs.new_full,
|
|
torch.Tensor.new_zeros: torch._refs.new_zeros,
|
|
torch.Tensor.new_ones: torch._refs.new_ones,
|
|
torch.Tensor.fill_: torch._refs.fill_,
|
|
torch.Tensor.zero_: torch._refs.zero_,
|
|
torch.Tensor.to: torch._refs.to,
|
|
torch.Tensor.sum_to_size: torch._refs.sum_to_size,
|
|
# TODO: Should these methods be mapped some other way?
|
|
torch.Tensor.copy_: torch._prims.copy_to,
|
|
torch.Tensor.resize: torch._prims.resize,
|
|
}
|
|
for mod_torch, mod_refs in modules:
|
|
for s in mod_refs.__all__: # type: ignore[attr-defined]
|
|
r[mod_torch.__dict__.get(s)] = mod_refs.__dict__.get(s)
|
|
|
|
# Support remapping torch.Tensor.foo to _refs.foo
|
|
for s in dir(torch.Tensor):
|
|
if s in torch._refs.__all__:
|
|
r[getattr(torch.Tensor, s)] = torch._refs.__dict__.get(s)
|
|
|
|
# Support conversions
|
|
for s in torch._refs._conversions.__all__:
|
|
r[getattr(torch.Tensor, s)] = torch._refs._conversions.__dict__.get(s)
|
|
|
|
return r
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def all_prims():
|
|
"""
|
|
Set of all prim functions, e.g., torch._prims.add in all_prims()
|
|
"""
|
|
return {torch._prims.__dict__.get(s) for s in torch._prims.__all__}
|
|
|
|
|
|
class NvfuserPrimsMode(torch.overrides.TorchFunctionMode):
|
|
"""
|
|
Switches the interpretation of torch.ops.prims.* functions to
|
|
use nvFuser's prims in torch.ops.nvprims.*
|
|
|
|
>>> # xdoctest: +SKIP("undefined vars")
|
|
>>> with NvfuserPrimsMode():
|
|
... torch.ops.prims.add(x, y) # calls torch.ops.nvprims.add(x, y)
|
|
|
|
By default, this context manager will fall back on the torch.ops.prims* if the
|
|
nvprim does not exist.
|
|
It's possible to skip certain prims by passing their names to the skip_ops
|
|
argument. skip_ops is expected to be a sequence of strings, e.g.,
|
|
["prims.add.default"] In order to check the expected name of a prim, one can
|
|
use the `torch.overrides.resolve_name`.
|
|
|
|
>>> # xdoctest: +SKIP("undefined vars")
|
|
>>> with NvfuserPrimsMode(skips_ops=("prims.add.default")):
|
|
... torch.ops.prims.add.default(x, y) # does not call torch.ops.nvprims.add.default(x, y)
|
|
"""
|
|
|
|
def __init__(self, *, skip_ops=()):
|
|
self.skip_ops = skip_ops
|
|
|
|
def __torch_function__(
|
|
self,
|
|
orig_func: Callable,
|
|
types: Sequence,
|
|
args: Sequence[Any] = (),
|
|
kwargs: Dict = None,
|
|
):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
|
|
# If the function is in the skip list, then we don't want to
|
|
# remap it to the nvprims.
|
|
if torch.overrides.resolve_name(orig_func) in self.skip_ops:
|
|
return orig_func(*args, **kwargs)
|
|
|
|
if isinstance(orig_func, torch._ops.OpOverload) or isinstance(
|
|
orig_func, torch._ops.OpOverloadPacket
|
|
):
|
|
namespace = str(orig_func).split(".")[0]
|
|
name = str(orig_func).split(".")[1]
|
|
if namespace == "prims":
|
|
nvfunc = getattr(torch.ops.nvprims, name, None)
|
|
if nvfunc is not None:
|
|
return nvfunc(*args, **kwargs)
|
|
return orig_func(*args, **kwargs)
|
|
|
|
|
|
class TorchRefsMode(torch.overrides.TorchFunctionMode):
|
|
"""
|
|
Switches the interpretation of torch.* functions and Tensor methods to
|
|
use PrimTorch refs in torch._refs. (Direct calls to _refs are unaffected.)
|
|
|
|
>>> # xdoctest: +SKIP
|
|
>>> with TorchRefsMode():
|
|
... torch.add(x, y) # calls torch._refs.add(x, y)
|
|
|
|
By default, this context manager will fall back on the torch.* if the
|
|
ref does not exist; set strict=True to error if this occurs.
|
|
If the ref exists we still would like to fall back on the torch.* sometimes,
|
|
this behavior can be customized by passing a function to should_fallback_fn.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
strict=False,
|
|
should_fallback_fn=lambda *_: False,
|
|
prims_mode_cls=nullcontext,
|
|
):
|
|
self.strict = strict
|
|
self.should_fallback_fn = should_fallback_fn
|
|
self.prims_mode_cls = prims_mode_cls
|
|
|
|
def __torch_function__(
|
|
self,
|
|
orig_func: Callable,
|
|
types: Sequence,
|
|
args: Sequence[Any] = (),
|
|
kwargs: Dict = None,
|
|
):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
# For primitive operations, run them as is without interception
|
|
# Unless we are in prims_mode, in which case we want to use nvprims
|
|
if orig_func in torch_function_passthrough or orig_func in all_prims():
|
|
with self.prims_mode_cls():
|
|
return orig_func(*args, **kwargs)
|
|
mapping = torch_to_refs_map()
|
|
func = mapping.get(orig_func, None)
|
|
|
|
# For torch.ops.aten.*, use registered decompositions from torch._decomp
|
|
# torch._decomp.decomposition_table provides a mapping from
|
|
# torch.ops.aten.* to torch._refs or torch._decomp.decompositions
|
|
# implementations.
|
|
# There're other ways to implement this functionality,
|
|
# see https://github.com/pytorch/pytorch/pull/82657#discussion_r939776417
|
|
if func is None and isinstance(orig_func, torch._ops.OpOverload):
|
|
func = torch._decomp.decomposition_table.get(orig_func, None)
|
|
|
|
if func is not None:
|
|
# If the ref exists query whether we should use it or not
|
|
if self.should_fallback_fn(self, orig_func, func, args, kwargs):
|
|
return orig_func(*args, **kwargs)
|
|
# torch calls inside func should be interpreted as refs calls
|
|
with self:
|
|
return func(*args, **kwargs)
|
|
if self.strict:
|
|
raise RuntimeError(
|
|
f"no _refs support for {torch.overrides.resolve_name(orig_func)}"
|
|
)
|
|
return orig_func(*args, **kwargs)
|
|
|
|
|
|
def _is_node_supported_nvfuser(node):
|
|
return (
|
|
node.op == "call_function"
|
|
and getattr(node.target, "impl_nvfuser", None) is not None
|
|
)
|
|
|
|
|
|
def _is_func_unsupported_nvfuser(
|
|
torch_function_mode, orig_func, func, args, kwargs, *, skip_ops=()
|
|
):
|
|
"""
|
|
This function traces the `func` under `torch_function_mode` and checks if
|
|
any of the traced nodes are not supported by nvFuser. If so, we should
|
|
fallback to the original function.
|
|
|
|
`skip_ops` argument is expected to be a list of strings of function names
|
|
that would match with `torch.overrides.resolve_name`.
|
|
|
|
Args:
|
|
torch_function_mode: The torch_function_mode context manager. orig_func:
|
|
The original function, its name will be used to check if
|
|
it should be skipped.
|
|
func: The function to be traced. args: The args to be passed to the
|
|
function. kwargs: The kwargs to be passed to the function.
|
|
Keyword args:
|
|
skip_ops: A list of ops to skip when checking if the function is
|
|
supported.
|
|
"""
|
|
# One supported case is easy to check: if the resolved name of the original
|
|
# function in the skip list, skip it.
|
|
if torch.overrides.resolve_name(orig_func) in skip_ops:
|
|
return True
|
|
|
|
with torch_function_mode:
|
|
try:
|
|
gm = get_isolated_graphmodule(func, args, kwargs)
|
|
except Exception as e:
|
|
warn(
|
|
"get_isolated_graphmodule failed on decomposition: "
|
|
+ func.__name__
|
|
+ " with error message: "
|
|
+ str(e)
|
|
)
|
|
# returns unsupported when tracing fails.
|
|
return True
|
|
|
|
supported_ops = NvfuserPrimOperatorSupport()
|
|
call_function_nodes = filter(lambda n: n.op == "call_function", gm.graph.nodes)
|
|
any_unsupported = any(
|
|
not supported_ops.is_node_supported(None, node) for node in call_function_nodes
|
|
)
|
|
return any_unsupported
|
|
|
|
|
|
class TorchRefsNvfuserCapabilityMode(TorchRefsMode):
|
|
def __init__(self, *, skip_ops=()):
|
|
aten_ops_to_skip = (
|
|
"aten._log_softmax.default",
|
|
"aten._log_softmax_backward_data.default",
|
|
"aten.expand.default",
|
|
)
|
|
self.skip_ops = tuple(skip_ops) + aten_ops_to_skip
|
|
super().__init__(
|
|
strict=False,
|
|
should_fallback_fn=functools.partial(
|
|
_is_func_unsupported_nvfuser,
|
|
skip_ops=tuple(skip_ops) + aten_ops_to_skip,
|
|
),
|
|
prims_mode_cls=functools.partial(NvfuserPrimsMode, skip_ops=skip_ops),
|
|
)
|
|
|
|
# TODO: remove this once version from _decomp/decompositions.py is working
|
|
# with this context manager
|
|
# This is a workaround for AOT Autograd graphs
|
|
def _cudnn_batch_norm(
|
|
self,
|
|
input,
|
|
weight,
|
|
bias,
|
|
running_mean,
|
|
running_var,
|
|
training,
|
|
exponential_average_factor,
|
|
epsilon,
|
|
):
|
|
a, b, c = torch.ops.nvprims.native_batch_norm(
|
|
input,
|
|
weight,
|
|
bias,
|
|
running_mean,
|
|
running_var,
|
|
training,
|
|
exponential_average_factor,
|
|
epsilon,
|
|
)
|
|
if training:
|
|
return (a, b, c, input.new_zeros((0,), dtype=torch.uint8))
|
|
return (
|
|
a,
|
|
weight.new_zeros((0,)),
|
|
weight.new_zeros((0,)),
|
|
input.new_zeros((0,), dtype=torch.uint8),
|
|
)
|
|
|
|
# This is a workaround for AOT Autograd graphs
|
|
def _cudnn_batch_norm_backward(
|
|
self,
|
|
input,
|
|
grad_output,
|
|
weight,
|
|
running_mean,
|
|
running_var,
|
|
save_mean,
|
|
save_var,
|
|
epsilon,
|
|
reserveSpace,
|
|
):
|
|
func = torch._decomp.decomposition_table[
|
|
torch.ops.aten.native_batch_norm_backward.default
|
|
]
|
|
return func(
|
|
grad_output,
|
|
input,
|
|
weight,
|
|
running_mean,
|
|
running_var,
|
|
save_mean,
|
|
save_var,
|
|
True,
|
|
epsilon,
|
|
[True, True, True],
|
|
)
|
|
|
|
def _is_var_mean(self, func):
|
|
return "torch.var_mean" == torch.overrides.resolve_name(func) or (
|
|
(
|
|
isinstance(func, torch._ops.OpOverload)
|
|
or isinstance(func, torch._ops.OpOverloadPacket)
|
|
)
|
|
and "aten.var_mean" in str(func)
|
|
)
|
|
|
|
def _is_view_or_reshape(self, func):
|
|
allowed_ops = {
|
|
"torch.Tensor.view",
|
|
"torch.Tensor.reshape",
|
|
"torch.view_copy",
|
|
"torch.reshape",
|
|
"aten.view.default",
|
|
"aten._unsafe_view.default",
|
|
"aten.view_copy.default",
|
|
} - set(self.skip_ops)
|
|
return torch.overrides.resolve_name(func) in allowed_ops
|
|
|
|
def _is_native_batch_norm(self, func):
|
|
return "torch.native_batch_norm" == torch.overrides.resolve_name(func) or (
|
|
func == torch.ops.aten.native_batch_norm.default
|
|
or func == torch.ops.aten.native_batch_norm
|
|
)
|
|
|
|
def _is_rand_like(self, func):
|
|
result = "torch.rand_like" == torch.overrides.resolve_name(func) or (
|
|
func == torch.ops.aten.rand_like or func == torch.ops.aten.rand_like.default
|
|
)
|
|
return result
|
|
|
|
def __torch_function__(
|
|
self,
|
|
orig_func: Callable,
|
|
types: Sequence,
|
|
args: Sequence[Any] = (),
|
|
kwargs: Dict = None,
|
|
):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
# First we intercept calls for nvfuser-specific prims bypassing generic torch._refs
|
|
if self._is_var_mean(orig_func):
|
|
return torch.ops.nvprims.var_mean(*args, **kwargs)
|
|
|
|
if (
|
|
orig_func == torch.ops.aten.cudnn_batch_norm.default
|
|
or orig_func == torch.ops.aten.cudnn_batch_norm
|
|
):
|
|
with self:
|
|
return self._cudnn_batch_norm(*args, **kwargs)
|
|
|
|
# A workaround for AOT Autograd graphs
|
|
# See https://github.com/pytorch/pytorch/pull/86115#issue-1394883782
|
|
if (
|
|
orig_func == torch.ops.aten.cudnn_batch_norm_backward.default
|
|
or orig_func == torch.ops.aten.cudnn_batch_norm_backward
|
|
):
|
|
with self:
|
|
return self._cudnn_batch_norm_backward(*args, **kwargs)
|
|
|
|
if self._is_view_or_reshape(orig_func):
|
|
a, *shape = args
|
|
shape = torch._prims_common.extract_shape_from_varargs(
|
|
shape, validate=False
|
|
) # type: ignore[assignment]
|
|
if len(kwargs) > 0:
|
|
warn("view has ignored kwargs!")
|
|
return torch.ops.nvprims.view(a, shape)
|
|
|
|
if orig_func == torch.ops.aten._reshape_alias.default:
|
|
a, shape, stride = args
|
|
if len(kwargs) > 0:
|
|
warn("view has ignored kwargs!")
|
|
return torch.ops.nvprims.view(a, shape)
|
|
|
|
if self._is_native_batch_norm(orig_func):
|
|
return torch.ops.nvprims.native_batch_norm(*args, **kwargs)
|
|
|
|
if self._is_rand_like(orig_func):
|
|
if len(kwargs) > 0:
|
|
warn("rand_like has ignored kwargs!")
|
|
return torch.ops.nvprims.rand_like(*args)
|
|
|
|
# Then we use TorchRefsMode to interpret the rest
|
|
return super().__torch_function__(orig_func, types, args, kwargs)
|