mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39111 In our present alias analysis, we consider any Value that enter another container as entering the heap, and thus aliasing all other heap values of the same type. There are a number of advantages to this approach: - it is not to hard to maintain the aliasDb implementation - it is much easier from an op schema perspective - there are many composite list ops registered internally and externally that would be tricky to register and get right if we did something more complicated - It limits the size of the AliasDb, because a container of size 10 only contains a single memory dag element instead of 10 elements. The downside is that we have are unable to handle the simple and extremely common case of a list of tensors being used in an ATen op. In an example like: ``` def foo(input): x = torch.tensor([1, 2, 3, 4]) y = [x, x] input.add_(1) return torch.cat(y) ``` we will consider x to be written to. any write to any wildcard element (an element that enters a tuple, an element that is taken from a list) will mark x as written to. This can be limiting for our ability to create a functional subset and fuse graphs - as a result, 4 of TorchVision classification models could not be functionalized. Test Plan: Imported from OSS Reviewed By: SplitInfinity Differential Revision: D23828003 Pulled By: eellison fbshipit-source-id: 9109fcb6f2ca20ca897cae71683530285da9d537
1286 lines
42 KiB
C++
1286 lines
42 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include "torch/csrc/jit/frontend/ir_emitter.h"
|
|
#include "torch/csrc/jit/ir/alias_analysis.h"
|
|
#include "torch/csrc/jit/runtime/custom_operator.h"
|
|
#include "torch/csrc/utils/memory.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
inline c10::AliasAnalysisKind aliasAnalysisFromSchema() {
|
|
return c10::AliasAnalysisKind::FROM_SCHEMA;
|
|
}
|
|
|
|
// Fixture to set up a graph and make assertions clearer
|
|
class TopologicalMoveTest : public ::testing::Test {
|
|
protected:
|
|
TopologicalMoveTest() {
|
|
createGraph();
|
|
aliasDb = torch::make_unique<AliasDb>(graph);
|
|
}
|
|
|
|
// Nodes are named after their output.
|
|
// e.g. "a" is an alias for "the node that outputs the value `a`"
|
|
void createGraph() {
|
|
graph = std::make_shared<Graph>();
|
|
createNode("a", {});
|
|
createNode("b", {"a"});
|
|
createNode("c", {});
|
|
createNode("d", {"a", "b"});
|
|
createNode("e", {"c", "b"});
|
|
createNode("f", {"e"});
|
|
createNode("g", {"e"});
|
|
createNode("h", {"g"});
|
|
createNode("i", {"g"});
|
|
createNode("j", {"i"});
|
|
createNode("k", {"i"});
|
|
createNode("l", {"a"});
|
|
createNode("m", {}, {"l"}); // block depends on l
|
|
createNode("n", {"m"});
|
|
createNode("o", {"n"});
|
|
createNode("p", {});
|
|
createNode("q", {});
|
|
createNode("r", {"q"});
|
|
createNode("s", {"q"});
|
|
|
|
graph->lint();
|
|
}
|
|
|
|
void createNode(
|
|
const std::string& name,
|
|
const std::vector<std::string>& inputNames,
|
|
const std::vector<std::string>& blockInputNames = {}) {
|
|
std::vector<Value*> inputs;
|
|
for (const auto& name_ : inputNames) {
|
|
inputs.push_back(nodes.at(name_)->output());
|
|
}
|
|
auto node = graph->appendNode(graph->create(prim::AutogradZero, inputs));
|
|
node->output()->setDebugName(name);
|
|
nodes[name] = node;
|
|
|
|
if (blockInputNames.size() != 0) {
|
|
node->addBlock();
|
|
std::vector<Value*> blockDeps;
|
|
for (const auto& name_ : blockInputNames) {
|
|
blockDeps.push_back(nodes.at(name_)->output());
|
|
}
|
|
|
|
auto block = node->blocks().at(0);
|
|
block->appendNode(graph->create(prim::AutogradZero, blockDeps));
|
|
}
|
|
}
|
|
|
|
bool moveBeforeTopologicallyValid(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint) {
|
|
std::function<bool(Node*, Node*)> func =
|
|
[this](Node* toInsert, Node* insertPoint) {
|
|
return aliasDb->moveBeforeTopologicallyValid(toInsert, insertPoint);
|
|
};
|
|
return moveWithChecks(toInsert, insertPoint, func);
|
|
}
|
|
|
|
bool moveAfterTopologicallyValid(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint) {
|
|
std::function<bool(Node*, Node*)> func =
|
|
[this](Node* toInsert, Node* insertPoint) {
|
|
return aliasDb->moveAfterTopologicallyValid(toInsert, insertPoint);
|
|
};
|
|
return moveWithChecks(toInsert, insertPoint, func);
|
|
}
|
|
|
|
bool moveWithChecks(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint,
|
|
std::function<bool(Node*, Node*)> func) {
|
|
auto n = nodes.at(toInsert);
|
|
auto insert = nodes.at(insertPoint);
|
|
bool isAfter = n->isAfter(insert);
|
|
|
|
std::vector<Node*> originalOrdering;
|
|
Node* original = isAfter ? n->next() : n->prev();
|
|
|
|
auto curNode = original;
|
|
while (curNode != n->owningBlock()->return_node()) {
|
|
originalOrdering.push_back(curNode);
|
|
if (isAfter) {
|
|
curNode = curNode->next();
|
|
} else {
|
|
curNode = curNode->prev();
|
|
}
|
|
}
|
|
|
|
const auto couldMove = func(n, insert);
|
|
// Check the graph is okay
|
|
graph->lint();
|
|
|
|
// If this is the picture of nodes
|
|
// <some nodes> ... toInsert ... <some more nodes> ... insertPoint
|
|
// ^----------^ check that these nodes haven't moved
|
|
curNode = original;
|
|
size_t idx = 0;
|
|
while (curNode != n->owningBlock()->return_node()) {
|
|
EXPECT_TRUE(originalOrdering[idx] == curNode);
|
|
if (isAfter) {
|
|
curNode = curNode->next();
|
|
} else {
|
|
curNode = curNode->prev();
|
|
}
|
|
idx++;
|
|
}
|
|
|
|
return couldMove;
|
|
}
|
|
|
|
void checkPostCondition(
|
|
const std::string& toInsert,
|
|
const std::string& insertPoint,
|
|
bool after) {
|
|
if (after) {
|
|
EXPECT_EQ(nodes.at(toInsert)->prev(), nodes.at(insertPoint));
|
|
} else {
|
|
EXPECT_EQ(nodes.at(toInsert)->next(), nodes.at(insertPoint));
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Graph> graph;
|
|
std::unique_ptr<AliasDb> aliasDb;
|
|
std::unordered_map<std::string, Node*> nodes;
|
|
};
|
|
|
|
TEST_F(TopologicalMoveTest, SplitsDeps) {
|
|
// Check that we are removing `this`'s deps properly when we need to split
|
|
// `this` and deps (see code for what the hell that means)
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("q", "s"));
|
|
checkPostCondition("q", "s", false);
|
|
}
|
|
|
|
// Move after
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardSimple) {
|
|
// Simple move backward
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("c", "a"));
|
|
checkPostCondition("c", "a", true);
|
|
}
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardInvalid) {
|
|
// simple invalid move backward
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("d", "a"));
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterNoOp) {
|
|
// doesn't actually move anything
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("f", "e"));
|
|
checkPostCondition("f", "e", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardMultipleDeps) {
|
|
// move backward with multiple dependencies
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("e", "c"));
|
|
checkPostCondition("e", "c", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterBackwardNonZeroWorkingSet) {
|
|
// Move backward with non-zero working set
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("k", "f"));
|
|
checkPostCondition("k", "f", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterForwardSimple) {
|
|
// Simple move forward
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("c", "d"));
|
|
checkPostCondition("c", "d", true);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveAfterForwardNonZeroWorkingSet) {
|
|
// Move forward with non-zero working set
|
|
EXPECT_TRUE(moveAfterTopologicallyValid("f", "l"));
|
|
checkPostCondition("f", "l", true);
|
|
}
|
|
|
|
// Move before
|
|
TEST_F(TopologicalMoveTest, MoveBeforeForwardSimple) {
|
|
// Simple move forward
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("b", "d"));
|
|
checkPostCondition("b", "d", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeBackwardSimple) {
|
|
// Simple move backward
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("c", "a"));
|
|
checkPostCondition("c", "a", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeNoOp) {
|
|
// doesn't actually move anything
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("a", "b"));
|
|
checkPostCondition("a", "b", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeForwardWithDeps) {
|
|
// move forward with deps
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("f", "m"));
|
|
checkPostCondition("f", "m", false);
|
|
}
|
|
|
|
TEST_F(TopologicalMoveTest, MoveBeforeBackwardWithDeps) {
|
|
// move backward with deps
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("l", "f"));
|
|
checkPostCondition("l", "f", false);
|
|
}
|
|
|
|
// check that dependencies in blocks are recognized
|
|
TEST_F(TopologicalMoveTest, DepsDisallowMove) {
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("l", "m"));
|
|
EXPECT_FALSE(moveBeforeTopologicallyValid("m", "l"));
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("n", "l"));
|
|
EXPECT_FALSE(moveBeforeTopologicallyValid("l", "n"));
|
|
}
|
|
|
|
// Test that moveAfter(n) and moveBefore(n->next()) are not necessarily
|
|
// equivalent. Here, the dependency ordering is n -> o -> p. So we can't
|
|
// move `n` after `o`, but we can move `n` before `p` (which pushes `o` after
|
|
// `p`)
|
|
TEST_F(TopologicalMoveTest, MoveAfterBeforeWithDeps) {
|
|
EXPECT_FALSE(moveAfterTopologicallyValid("n", "o"));
|
|
EXPECT_TRUE(moveBeforeTopologicallyValid("o", "p"));
|
|
checkPostCondition("o", "p", false);
|
|
}
|
|
|
|
namespace {
|
|
Node* insertIf(
|
|
Graph& g,
|
|
Value* condValue,
|
|
std::function<std::vector<Value*>()> trueInst,
|
|
std::function<std::vector<Value*>()> falseInst) {
|
|
auto if_ = g.insertNode(g.create(prim::If, 0));
|
|
if_->addInput(condValue); // condition value
|
|
auto trueBlock = if_->addBlock();
|
|
auto falseBlock = if_->addBlock();
|
|
{
|
|
// Mutate in true block
|
|
WithInsertPoint g(trueBlock);
|
|
auto outputs = trueInst();
|
|
for (auto output : outputs) {
|
|
trueBlock->registerOutput(output);
|
|
}
|
|
}
|
|
{
|
|
WithInsertPoint g(falseBlock);
|
|
auto outputs = falseInst();
|
|
for (auto output : outputs) {
|
|
falseBlock->registerOutput(output);
|
|
}
|
|
}
|
|
|
|
EXPECT_TRUE(trueBlock->outputs().size() == falseBlock->outputs().size());
|
|
for (auto output : trueBlock->outputs()) {
|
|
if_->addOutput()->setType(output->type());
|
|
}
|
|
return if_;
|
|
}
|
|
|
|
template <class Exception, class Functor>
|
|
inline void expectThrows(Functor&& functor, const char* expectMessageContains) {
|
|
try {
|
|
std::forward<Functor>(functor)();
|
|
} catch (const Exception& e) {
|
|
if (std::string(e.what()).find(expectMessageContains) ==
|
|
std::string::npos) {
|
|
AT_ERROR(
|
|
"Expected error message to contain \"",
|
|
expectMessageContains,
|
|
"\" but error message was: ",
|
|
e.what());
|
|
}
|
|
return;
|
|
}
|
|
AT_ERROR(
|
|
"Expected to throw exception containing \"",
|
|
expectMessageContains,
|
|
"\" but didn't throw");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(AliasAnalysisTest, AliasingMutationBlocksMoves) {
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->addInput();
|
|
|
|
// addsB = b + b
|
|
// c = a + b
|
|
// a += b
|
|
// d = c + c
|
|
auto addsB = graph->insert(aten::add, {b, b});
|
|
auto c = graph->insert(aten::add, {a, b});
|
|
auto aMut = graph->insert(aten::add_, {a, b});
|
|
auto d = graph->insert(aten::add, {c, c});
|
|
|
|
graph->lint();
|
|
|
|
AliasDb aliasDb(graph);
|
|
// Can't move past a mutation of a used value
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(c->node(), aMut->node()));
|
|
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(d->node(), c->node()));
|
|
|
|
// b should alias to a (since they are both inputs)
|
|
EXPECT_FALSE(
|
|
aliasDb.moveAfterTopologicallyValid(addsB->node(), aMut->node()));
|
|
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(addsB->node(), c->node()));
|
|
|
|
graph->lint();
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, AliasingMutationBlocksMoves2) {
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->addInput();
|
|
|
|
auto constant = graph->insertConstant(1);
|
|
auto fresh = graph->insert(aten::rand, {constant});
|
|
auto usesB = graph->insert(aten::add, {b, fresh});
|
|
auto aliasesB = graph->insert(aten::select, {a, constant, constant});
|
|
auto mutatesAliasOfB = graph->insert(aten::add_, {aliasesB, fresh});
|
|
graph->insert(aten::add, {fresh, aliasesB});
|
|
graph->lint();
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(
|
|
aliasesB->node(), mutatesAliasOfB->node()));
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(
|
|
usesB->node(), mutatesAliasOfB->node()));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, SideEffectsBlockMoves) {
|
|
// Test moves across side effectful nodes
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto print1 = graph->insertNode(graph->create(prim::Print, {a}, 0));
|
|
WithInsertPoint guard(print1);
|
|
auto print2 = graph->insertNode(graph->create(prim::Print, {a, a}, 0));
|
|
AliasDb aliasDb(graph);
|
|
|
|
// def foo(a):
|
|
// print2(a, a)
|
|
// print1(a)
|
|
|
|
// test moving across each other
|
|
EXPECT_FALSE(aliasDb.moveAfterTopologicallyValid(print2, print1));
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(print1, print2));
|
|
|
|
// test moving where they already are
|
|
EXPECT_TRUE(aliasDb.moveBeforeTopologicallyValid(print2, print1));
|
|
EXPECT_TRUE(aliasDb.moveAfterTopologicallyValid(print1, print2));
|
|
|
|
graph->insertNode(graph->create(prim::MakeTestTensor, {}, 1));
|
|
AliasDb aliasDb2(graph);
|
|
|
|
// def foo(a):
|
|
// print2(a, a)
|
|
// non_side_effectful = makeTestTensor()
|
|
// print1(a)
|
|
|
|
// test moving with a side effectful node between
|
|
EXPECT_FALSE(aliasDb2.moveAfterTopologicallyValid(print2, print1));
|
|
EXPECT_FALSE(aliasDb2.moveBeforeTopologicallyValid(print2, print1));
|
|
EXPECT_FALSE(aliasDb2.moveAfterTopologicallyValid(print1, print2));
|
|
EXPECT_FALSE(aliasDb2.moveBeforeTopologicallyValid(print1, print2));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, MovingAcrossInnerBlocks) {
|
|
// Test moves across inner blocks
|
|
|
|
// a = rand(1)
|
|
// b = rand(1)
|
|
// if True:
|
|
// a.add_(b)
|
|
// c = a + b
|
|
auto graph = std::make_shared<Graph>();
|
|
auto constant = graph->insertConstant(1);
|
|
auto a = graph->insert(aten::rand, {constant});
|
|
auto b = graph->insert(aten::rand, {constant});
|
|
|
|
auto if_ = insertIf(
|
|
*graph,
|
|
constant,
|
|
[&]() -> std::vector<Value*> {
|
|
auto aMut = graph->insert(aten::add_, {a, b});
|
|
return {aMut};
|
|
},
|
|
[&]() -> std::vector<Value*> { return {a}; });
|
|
|
|
auto c = graph->insert(aten::add, {a, b});
|
|
|
|
graph->lint();
|
|
|
|
// we should not be able to move `c` before the if statement, since it
|
|
// may write to `a`.
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(c->node(), if_));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, NoneHasNoWriters) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%opt : Tensor? = prim::Constant()
|
|
%out : Tensor = prim::unchecked_unwrap_optional(%opt)
|
|
%ret.2 : Tensor = aten::div(%out, %out, %out)
|
|
return (%opt, %out, %ret.2)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.hasWriters(vmap["opt"]->node()));
|
|
}
|
|
|
|
TEST(AliasAnalysisTest, SafeToChangeAliasingRelationship) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x : Tensor):
|
|
%3 : int = prim::Constant[value=1]()
|
|
%2 : int = prim::Constant[value=0]()
|
|
%b : Tensor = aten::add(%x, %2, %3)
|
|
%c : Tensor = aten::add(%x, %2, %3)
|
|
%d : Tensor = aten::add(%x, %2, %3)
|
|
%e : Tensor = aten::add(%x, %2, %3)
|
|
%f : Tensor[] = prim::ListConstruct(%e)
|
|
%14 : (Tensor, Tensor) = prim::TupleConstruct(%b, %c)
|
|
return (%14)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
AliasDb aliasDb(graph);
|
|
// x, b, c escape scope, so we can't introduce an aliasing relationship
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["b"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["x"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["c"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["b"]));
|
|
|
|
// e aliases the wildcard set because it's contained in a list
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["e"], vmap["x"]));
|
|
EXPECT_FALSE(aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["e"]));
|
|
|
|
// d is a temporary with no writers, safe to change aliasing relationship
|
|
// here
|
|
EXPECT_TRUE(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["d"]));
|
|
EXPECT_TRUE(aliasDb.safeToChangeAliasingRelationship(vmap["d"], vmap["c"]));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, Basic) {
|
|
RegisterOperators reg({Operator(
|
|
"prim::creates_alias(Tensor(a) x) -> Tensor(a)",
|
|
[](Stack* s) {},
|
|
aliasAnalysisFromSchema())});
|
|
const auto creates_alias = Symbol::fromQualString("prim::creates_alias");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->addInput();
|
|
|
|
// aten::add(%b, %b)
|
|
// aten::add_(%a, %b)
|
|
// foo::creates_alias(%a)
|
|
auto pureNode = graph->insert(aten::add, {b, b})->node();
|
|
auto writingNode = graph->insert(aten::add_, {a, b})->node();
|
|
auto node3 = graph->insert(creates_alias, {a})->node();
|
|
auto aAlias = node3->output();
|
|
|
|
graph->lint();
|
|
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.mayAlias(aAlias, a));
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
EXPECT_FALSE(
|
|
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{a}));
|
|
EXPECT_FALSE(
|
|
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{b}));
|
|
EXPECT_TRUE(
|
|
aliasDb.writesToAlias(writingNode, std::unordered_set<const Value*>{a}));
|
|
EXPECT_TRUE(aliasDb.writesToAlias(
|
|
writingNode, std::unordered_set<const Value*>{a, b}));
|
|
EXPECT_TRUE(aliasDb.writesToAlias(
|
|
writingNode, std::unordered_set<const Value*>{aAlias}));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, IsMutable) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor):
|
|
%b : Tensor = aten::relu_(%x)
|
|
return (%b)
|
|
)IR",
|
|
&*graph);
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto relu = *node_iter;
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.isMutable(relu));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, IsImmutable) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor, %y : Tensor):
|
|
%b : Tensor = aten::mul(%x, %y)
|
|
return (%b)
|
|
)IR",
|
|
&*graph);
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto mul = *node_iter;
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.isMutable(mul));
|
|
}
|
|
|
|
TEST(WriteTrackingTest, HasWriters) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor, %y : Tensor):
|
|
%c1 : int = prim::Constant[value=1]()
|
|
%b : Tensor = aten::add_(%x, %y, %c1)
|
|
return (%b)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
auto add = vmap["b"]->node();
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.hasWriters(add));
|
|
EXPECT_TRUE(aliasDb.isMutable(add));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MayContainAlias) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%inp: Tensor[]):
|
|
%x : str = prim::Constant[value="a"]()
|
|
%y : Tensor = prim::Constant()
|
|
%z : Tensor = prim::Constant()
|
|
%a : (Tensor) = prim::TupleConstruct(%y)
|
|
%b : Dict(str, Tensor) = prim::DictConstruct(%x, %y)
|
|
%c : Tensor[] = prim::ListConstruct(%y)
|
|
return (%a, %b, %c)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
auto str_output = vmap["x"];
|
|
auto ten_output = vmap["y"];
|
|
auto local_var = vmap["z"];
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_TRUE(graph->outputs().size() == 3);
|
|
for (auto out : graph->outputs()) {
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, out));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(local_var, out));
|
|
}
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_output, graph->inputs()));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(local_var, graph->inputs()));
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias({ten_output}, graph->outputs()));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(str_output, graph->outputs()));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, PrimitveValuesDontAliasContainers) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%x : str = prim::Constant[value="a"]()
|
|
%y : int = prim::Constant[value=1]()
|
|
%a : (int) = prim::TupleConstruct(%y)
|
|
%b : Dict(str, int) = prim::DictConstruct(%x, %y)
|
|
%c : int[] = prim::ListConstruct(%y)
|
|
return (%a, %b, %c)
|
|
)IR",
|
|
&*graph);
|
|
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
node_iter++; // string
|
|
Node* int_node = *node_iter++;
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_TRUE(graph->outputs().size() == 3);
|
|
// primitive values don't need to alias container
|
|
for (auto out : graph->outputs()) {
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(int_node->output(), out));
|
|
}
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, InputsCanAliasOutputs) {
|
|
// Test input aliasing
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x: Tensor, %y: Tensor):
|
|
%a : (Tensor) = prim::TupleConstruct(%x)
|
|
return (%a)
|
|
)IR",
|
|
&*graph);
|
|
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto tuple_node = *node_iter;
|
|
AliasDb aliasDb(graph);
|
|
|
|
for (auto input : graph->inputs()) {
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(input, tuple_node->output()));
|
|
}
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(graph->inputs(), graph->outputs()));
|
|
}
|
|
|
|
// Test tuple that doesn't come from construct
|
|
TEST(ContainerAliasingTest, NestedTupleConstruct) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%x : int,
|
|
%y : Tensor,
|
|
%z : Tensor):
|
|
%3 : int = prim::Constant[value=1]()
|
|
%4 : bool = aten::eq(%x, %3)
|
|
%a : (Tensor) = prim::If(%4)
|
|
block0():
|
|
%a.1 : (Tensor) = prim::TupleConstruct(%y)
|
|
-> (%a.1)
|
|
block1():
|
|
%a.2 : (Tensor) = prim::TupleConstruct(%z)
|
|
-> (%a.2)
|
|
return (%a)
|
|
)IR",
|
|
&*graph);
|
|
|
|
AliasDb aliasDb(graph);
|
|
|
|
for (auto input : graph->inputs()) {
|
|
if (input->type() == IntType::get()) {
|
|
continue;
|
|
}
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(input, graph->outputs().at(0)));
|
|
}
|
|
}
|
|
|
|
// test nested types
|
|
TEST(ContainerAliasingTest, NestedTypes) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%a : Tensor = prim::MakeTestTensor()
|
|
%a_list : Tensor[] = prim::ListConstruct(%a)
|
|
%b : Tensor = prim::MakeTestTensor()
|
|
%b_list : Tensor[] = prim::ListConstruct(%b)
|
|
%13 : (Tensor[], Tensor[]) = prim::TupleConstruct(%a_list, %b_list)
|
|
return (%13)
|
|
)IR",
|
|
&*graph);
|
|
AliasDb aliasDb(graph);
|
|
auto g_output = graph->outputs().at(0);
|
|
auto list_2 = g_output->node()->inputs().at(0);
|
|
auto list_1 = g_output->node()->inputs().at(1);
|
|
|
|
// TODO FIX assume conservatively for now
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_1, list_2));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_2, list_1));
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_1, g_output));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(list_2, g_output));
|
|
}
|
|
|
|
// simple example
|
|
TEST(ContainerAliasingTest, Simple) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : Tensor = prim::Constant()
|
|
%1 : Tensor = prim::Constant()
|
|
%13 : (Tensor) = prim::TupleConstruct(%0)
|
|
return (%13)
|
|
)IR",
|
|
&*graph);
|
|
AliasDb aliasDb(graph);
|
|
|
|
auto node_iter = graph->block()->nodes().begin();
|
|
auto first_ten = *node_iter++;
|
|
auto second_ten = *node_iter++;
|
|
auto tup_node = *node_iter;
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(first_ten->output(), tup_node->output()));
|
|
EXPECT_TRUE(
|
|
!aliasDb.mayContainAlias(second_ten->output(), tup_node->output()));
|
|
|
|
std::vector<Value*> first_st = {first_ten->output()};
|
|
std::vector<Value*> second_st = {second_ten->output()};
|
|
std::vector<Value*> tup_st = {tup_node->output()};
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(first_st, tup_st));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(first_st, second_st));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(second_st, tup_st));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, Lists) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%x : str = prim::Constant[value="a"]()
|
|
%y : Tensor = prim::Constant()
|
|
%c : Tensor[] = prim::ListConstruct(%y)
|
|
%d : Tensor[] = prim::ListConstruct(%y)
|
|
return (%c, %d)
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
|
|
AliasDb aliasDb(graph);
|
|
auto x = vmap["x"];
|
|
auto c = vmap["c"];
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(x, c));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(c, x));
|
|
|
|
auto d = vmap["d"];
|
|
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(d, c));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(c, d));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, Lists2) {
|
|
// Test list container aliasing
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%12 : int[] = prim::ListConstruct(%0, %1)
|
|
%y : Tensor = prim::MakeTestTensor()
|
|
%22 : int[] = prim::ListConstruct(%0, %1)
|
|
%z : Tensor = prim::MakeTestTensor()
|
|
%32 : int[] = prim::ListConstruct(%0, %1)
|
|
%fresh : Tensor = prim::MakeTestTensor()
|
|
%foo : Tensor[] = prim::ListConstruct(%x, %y)
|
|
%43 : Tensor[] = aten::append(%foo, %z)
|
|
return ()
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto x = vmap["x"];
|
|
auto y = vmap["y"];
|
|
auto z = vmap["z"];
|
|
// Tensors x, y, and z went into a list, so they all may alias each other.
|
|
EXPECT_TRUE(aliasDb.mayAlias(x, y));
|
|
EXPECT_TRUE(aliasDb.mayAlias(y, z));
|
|
EXPECT_TRUE(aliasDb.mayAlias(x, z));
|
|
|
|
// But we know `fresh` didn't go into a list, so x, y, and z should not
|
|
// alias it.
|
|
auto fresh = vmap["fresh"];
|
|
EXPECT_FALSE(aliasDb.mayAlias(x, fresh));
|
|
EXPECT_FALSE(aliasDb.mayAlias(y, fresh));
|
|
EXPECT_FALSE(aliasDb.mayAlias(z, fresh));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, Conservative) {
|
|
// test "conservative" analysis writes to the inside of a container.
|
|
auto ops = torch::RegisterOperators(
|
|
"custom::conservative", [](torch::List<at::Tensor> in) { return in; });
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = prim::MakeTestTensor()
|
|
%12 : Tensor[] = prim::ListConstruct(%11)
|
|
%out : Tensor[] = custom::conservative(%12)
|
|
%ret.2 : Tensor = aten::div(%11, %11)
|
|
return ()
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto conservativeOp = vmap["out"]->node();
|
|
auto tensor = vmap["11"];
|
|
EXPECT_TRUE(aliasDb.writesToAlias(conservativeOp, ValueSet{tensor}));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MovesAcrossContainedWrites) {
|
|
auto ops = torch::RegisterOperators().op(
|
|
"uses::list",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](torch::List<at::Tensor> in) {
|
|
return torch::rand({2, 3});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
// Write to the inside of a list. Check that we can't reorder a
|
|
// print across it.
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%35 : int = prim::Constant[value=1]()
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%23 : int = prim::Constant[value=0]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = prim::MakeTestTensor()
|
|
%12 : int[] = prim::ListConstruct(%0, %1)
|
|
%21 : Tensor = prim::MakeTestTensor()
|
|
%l : Tensor[] = prim::ListConstruct(%11, %21)
|
|
%24 : Tensor = aten::select(%l, %23)
|
|
%25 : int[] = prim::ListConstruct(%0, %1)
|
|
%34 : Tensor = prim::MakeTestTensor()
|
|
%36 : Tensor = aten::add_(%24, %34, %35)
|
|
%37 : Tensor = uses::list(%l)
|
|
return (%37)
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto listUse = vmap["37"]->node();
|
|
auto internalWrite = vmap["36"]->node();
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
|
|
}
|
|
|
|
TEST(ContainerAliasingTest, MovesAcrossContainedWritesNested) {
|
|
// The same as above, but with a nested list
|
|
auto ops = torch::RegisterOperators().op(
|
|
"uses::list",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](torch::List<at::Tensor> in) {
|
|
return torch::rand({2, 3});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
// Write to the inside of a list. Check that we can't reorder a
|
|
// print across it.
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%38 : int = prim::Constant[value=1]()
|
|
%0 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=3]()
|
|
%24 : int = prim::Constant[value=0]()
|
|
%2 : int[] = prim::ListConstruct(%0, %1)
|
|
%11 : Tensor = prim::MakeTestTensor()
|
|
%12 : int[] = prim::ListConstruct(%0, %1)
|
|
%21 : Tensor = prim::MakeTestTensor()
|
|
%l : Tensor[] = prim::ListConstruct(%11, %21)
|
|
%25 : Tensor = aten::select(%l, %24)
|
|
%27 : Tensor = aten::select(%25, %24, %24)
|
|
%28 : int[] = prim::ListConstruct(%0, %1)
|
|
%37 : Tensor = prim::MakeTestTensor()
|
|
%39 : Tensor = aten::add_(%27, %37, %38)
|
|
%40 : Tensor = uses::list(%l)
|
|
return (%40)
|
|
)IR",
|
|
graph.get(),
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto listUse = vmap["40"]->node();
|
|
auto internalWrite = vmap["39"]->node();
|
|
EXPECT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
|
|
}
|
|
|
|
TEST(WildcardsTest, Basic) {
|
|
RegisterOperators reg({Operator(
|
|
"prim::returns_wildcard(Tensor a) -> Tensor(*)",
|
|
[](Stack* stack) {},
|
|
aliasAnalysisFromSchema()),
|
|
Operator(
|
|
"prim::writes(Tensor(z!) a) -> Tensor(a)",
|
|
[](Stack* stack) {},
|
|
aliasAnalysisFromSchema())});
|
|
const auto returns_wildcard =
|
|
Symbol::fromQualString("prim::returns_wildcard");
|
|
const auto writes = Symbol::fromQualString("prim::writes");
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
const auto a = graph->addInput();
|
|
|
|
const auto constant = graph->insertConstant(1);
|
|
const auto fresh = graph->insert(aten::rand, {constant});
|
|
const auto fresh2 = graph->insert(aten::rand, {constant});
|
|
const auto wildcard = graph->insert(returns_wildcard, {fresh});
|
|
|
|
{
|
|
graph->lint();
|
|
AliasDb aliasDb(graph);
|
|
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, fresh));
|
|
EXPECT_FALSE(aliasDb.mayAlias(wildcard, fresh));
|
|
EXPECT_TRUE(aliasDb.mayAlias(wildcard, a));
|
|
EXPECT_FALSE(aliasDb.mayAlias(ValueSet{wildcard}, ValueSet{}));
|
|
EXPECT_FALSE(aliasDb.hasWriters(wildcard->node()));
|
|
}
|
|
|
|
graph->insert(writes, {fresh2})->node();
|
|
{
|
|
graph->lint();
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_FALSE(aliasDb.hasWriters(wildcard->node()));
|
|
}
|
|
|
|
const auto wildcardWrite = graph->insert(writes, {wildcard})->node();
|
|
{
|
|
graph->lint();
|
|
AliasDb aliasDb(graph);
|
|
// Test writes to wildcards
|
|
EXPECT_FALSE(aliasDb.writesToAlias(
|
|
wildcardWrite, std::unordered_set<const Value*>{fresh}));
|
|
EXPECT_FALSE(aliasDb.writesToAlias(
|
|
wildcardWrite, std::unordered_set<const Value*>{fresh2}));
|
|
EXPECT_TRUE(aliasDb.writesToAlias(
|
|
wildcardWrite, std::unordered_set<const Value*>{a}));
|
|
EXPECT_TRUE(aliasDb.hasWriters(wildcard->node()));
|
|
}
|
|
}
|
|
|
|
// test that wildcards are correctly divided by type
|
|
TEST(WildcardsTest, TypeIsolation) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%ten_list : Tensor[], %int_list : int[], %opt_ten_list : Tensor[]?):
|
|
%ten : Tensor = prim::Constant()
|
|
%4 : Tensor[] = aten::append(%ten_list, %ten)
|
|
%ten_ten_list : Tensor[][] = prim::Constant()
|
|
%int_int_list : int[][] = prim::Constant()
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto opt_ten_list = vmap["opt_ten_list"];
|
|
auto ten_list = vmap["ten_list"];
|
|
auto int_list = vmap["int_list"];
|
|
EXPECT_FALSE(aliasDb.hasWriters(int_list));
|
|
EXPECT_TRUE(aliasDb.hasWriters(opt_ten_list));
|
|
EXPECT_TRUE(aliasDb.hasWriters(ten_list));
|
|
EXPECT_FALSE(aliasDb.mayContainAlias(int_list, opt_ten_list));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, opt_ten_list));
|
|
EXPECT_TRUE(aliasDb.mayAlias(ten_list, opt_ten_list));
|
|
|
|
auto list_of_tensor_lists = vmap["ten_ten_list"];
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, list_of_tensor_lists));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, vmap["ten"]));
|
|
|
|
EXPECT_TRUE(
|
|
!aliasDb.mayContainAlias(vmap["int_int_list"], list_of_tensor_lists));
|
|
}
|
|
|
|
// test invariant container aliasing
|
|
// the containers of different type cannot alias each other,
|
|
// however they may contain elements which alias each other
|
|
TEST(WildcardsTest, InvariantContainerAliasing) {
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%ten_list : Tensor[], %ten_opt_list : Tensor?[]):
|
|
%ten : Tensor = prim::Constant()
|
|
%4 : Tensor[] = aten::append(%ten_list, %ten)
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
auto ten_opt_list = vmap["ten_opt_list"];
|
|
auto ten_list = vmap["ten_list"];
|
|
EXPECT_FALSE(aliasDb.hasWriters(ten_opt_list));
|
|
EXPECT_TRUE(aliasDb.hasWriters(ten_list));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(ten_list, ten_opt_list));
|
|
EXPECT_FALSE(aliasDb.mayAlias(ten_list, ten_opt_list));
|
|
}
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%float_3D : Float(*, *, *), %float_2D : Float(*, *)):
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["float_3D"], vmap["float_2D"]));
|
|
}
|
|
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
parseIR(
|
|
R"IR(
|
|
graph(%float_3D_list : Float(*, *, *)[], %float_2D_list : Float(*, *)[], %ten: Tensor):
|
|
return ()
|
|
)IR",
|
|
&*graph,
|
|
vmap);
|
|
AliasDb aliasDb(graph);
|
|
EXPECT_TRUE(aliasDb.mayAlias(vmap["float_3D_list"], vmap["float_2D_list"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["float_3D_list"], vmap["ten"]));
|
|
EXPECT_TRUE(aliasDb.mayContainAlias(vmap["float_2D_list"], vmap["ten"]));
|
|
}
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithInferredSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand1",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand1");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// Conservatively we assume there is a reference
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithSpecifiedSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand2(Tensor arg1) -> Tensor",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand2");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// Conservatively we assume there is a reference
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithAliasingAnnotationsShouldError) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand3(Tensor(a) arg1) -> Tensor(b)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
|
|
const auto rand_op = Symbol::fromQualString("foo::rand3");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand3(Tensor(a) arg1) -> (Tensor(b)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, ConservativeWithAliasingAnnotationsShouldError2) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand4(Tensor(a) arg1) -> Tensor(a)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand4");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand4(Tensor(a) arg1) -> (Tensor(a)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaWithInferredSchemaShouldError) {
|
|
expectThrows<c10::Error>(
|
|
[] {
|
|
torch::RegisterOperators().op(
|
|
"foo::rand5",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
},
|
|
"Tried to register operator foo::rand5(Tensor _0) -> (Tensor _0) with AliasAnalysisKind::FROM_SCHEMA, but the schema is inferred");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaInferredPure) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand6(Tensor arg1) -> Tensor",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand6");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema doesn't contain alias information, which means it's pure
|
|
// (meh!)
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaAliased) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand7(Tensor(a) arg1) -> Tensor(a)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand7");
|
|
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema has an alias reference
|
|
EXPECT_TRUE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, FromSchemaPure) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand8(Tensor(a) arg1) -> Tensor(b)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand8");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema does not have an alias reference
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureNoSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand9",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand9");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema is pure, there cannot be any alias
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureWithSchema) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand10(Tensor arg1) -> Tensor",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor) -> at::Tensor {
|
|
return at::rand({2, 2});
|
|
})
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand10");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
auto b = graph->insert(rand_op, {a});
|
|
AliasDb aliasDb(graph);
|
|
// The schema is pure, there cannot be any alias
|
|
EXPECT_FALSE(aliasDb.mayAlias(a, b));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureWithAnnotationsShouldError) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand11(Tensor(a) arg1) -> Tensor(a)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand11");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand11(Tensor(a) arg1) -> (Tensor(a)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, AliasMoveAtenListOp) {
|
|
auto graph = std::make_shared<Graph>();
|
|
std::unordered_map<std::string, Value*> vmap;
|
|
auto graph_string = R"IR(
|
|
graph():
|
|
%x : Tensor = prim::MakeTestTensor()
|
|
%8 : int = prim::Constant[value=0]()
|
|
%5 : int = prim::Constant[value=1]()
|
|
%4 : int = prim::Constant[value=2]()
|
|
%y : Tensor[] = prim::ListConstruct(%x)
|
|
%6 : Tensor = aten::add_(%x, %4, %5)
|
|
%9 : Tensor = aten::cat(%y, %8)
|
|
return (%9))IR";
|
|
|
|
torch::jit::parseIR(graph_string, graph.get(), vmap);
|
|
AliasDb aliasDb(graph);
|
|
|
|
// bc y.1 has a single used in a single non-aliasing aten op,
|
|
// x is added to y.1 contained elements instead of wildcard set
|
|
EXPECT_TRUE(!aliasDb.mayAlias(vmap["x"], vmap["9"]));
|
|
|
|
// write to contained element should prevent move
|
|
EXPECT_TRUE(!aliasDb.moveBeforeTopologicallyValid(
|
|
vmap["y"]->node(), vmap["9"]->node()));
|
|
}
|
|
|
|
TEST(AliasRegistrationTest, PureWithAnnotationsShouldError2) {
|
|
auto registry = torch::RegisterOperators().op(
|
|
"foo::rand12(Tensor(a) arg1) -> Tensor(b)",
|
|
torch::RegisterOperators::options()
|
|
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
|
|
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
|
|
const auto rand_op = Symbol::fromQualString("foo::rand12");
|
|
auto graph = std::make_shared<Graph>();
|
|
auto a = graph->addInput();
|
|
graph->insert(rand_op, {a});
|
|
|
|
// Registration time is okay, but throw exception when fetch from
|
|
// registration.
|
|
expectThrows<c10::Error>(
|
|
[&graph] { AliasDb aliasDb(graph); },
|
|
"Tried to register operator foo::rand12(Tensor(a) arg1) -> (Tensor(b)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|