pytorch/torch/csrc/cuda/nccl.h
Edward Yang adb7df7117 Consistently use TORCH_CUDA_API for all files that live in cuda targets. (#29158)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29158

My plan is to split out libtorch_cuda.so from libtorch.so.  To do this,
I need accurate _API annotations for files in these directories.

I determined the correct set of annotations by looking at
tools/build_variables.py and making sure every file that was a member
of the libtorch_cuda/ATen-cu targets had these annotations.  (torch-cpp-cuda
doesn't count since that's going to be where the stuff that has explicit
USE_CUDA lives, so it's going to be in a separate dynamic library).

As future work, it would be good to setup a lint rule to help people
understand what the correct _API annotation to use in a file is; it
would also be good to reorganize folder structure so that the library
structure is clearer.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18309593

Pulled By: ezyang

fbshipit-source-id: de710e721b6013a09dad17b35f9a358c95a91030
2019-11-06 15:02:07 -08:00

87 lines
2.1 KiB
C++

#pragma once
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <THC/THC.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/util/Optional.h>
#include <nccl.h>
#include <cstddef>
#include <vector>
namespace torch {
namespace cuda {
namespace nccl {
// NOTE: this is exposed only so that python_nccl.cpp can some of these helpers.
// Don't use them outside of these files.
namespace detail {
void throw_nccl_error(ncclResult_t status);
static inline void NCCL_CHECK(ncclResult_t status) {
if (status != ncclSuccess) {
throw_nccl_error(status);
}
}
struct AutoNcclGroup {
AutoNcclGroup() {
(c10::cuda::CUDACachingAllocator::getFreeMutex())->lock();
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
NCCL_CHECK(ncclGroupStart());
#endif
}
~AutoNcclGroup() {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
NCCL_CHECK(ncclGroupEnd());
#endif
(c10::cuda::CUDACachingAllocator::getFreeMutex())->unlock();
}
};
TORCH_CUDA_API at::ArrayRef<ncclComm_t> get_communicators(at::TensorList inputs);
TORCH_CUDA_API void check_inputs(
at::TensorList inputs,
at::TensorList outputs,
int input_multiplier,
int output_multiplier);
TORCH_CUDA_API ncclDataType_t get_data_type(const at::Tensor& t);
} // namespace detail
using comm_list = std::vector<ncclComm_t>;
using stream_list = std::vector<c10::optional<at::cuda::CUDAStream>>;
TORCH_CUDA_API std::uint64_t version();
bool is_available(at::TensorList tensors);
TORCH_CUDA_API void broadcast(
at::TensorList tensors,
const stream_list& streams = {},
const comm_list& user_comms = {});
size_t get_max_count();
TORCH_CUDA_API void reduce(
const std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
int32_t root = 0,
int32_t op = ncclSum,
const stream_list& streams = {},
const comm_list& user_comms = {});
TORCH_CUDA_API void reduce(
std::vector<at::Tensor>& inputs,
int32_t root = 0,
int32_t op = ncclSum,
const stream_list& streams = {},
const comm_list& user_comms = {});
} // namespace nccl
} // namespace cuda
} // namespace torch