mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Duck shaping says that when two input tensors have the same size, we assume they are symbolically related. This follows the same optimization done by inductor. This optimization is not done completely because we don't currently install guards corresponding to the duck shape relationships we created, but overall the guard propagation for dynamic shape tracing is incomplete at the moment. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/85808 Approved by: https://github.com/albanD
1368 lines
68 KiB
Python
1368 lines
68 KiB
Python
# Owner(s): ["module: ProxyTensor"]
|
|
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
import torch
|
|
import unittest
|
|
import warnings
|
|
import torch.nn.utils._stateless as stateless
|
|
import operator
|
|
from collections.abc import Iterable
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_methods_invocations import DecorateInfo
|
|
from torch.testing._internal.common_methods_invocations import op_db, wrapper_set_seed
|
|
from torch._subclasses.fake_tensor import DynamicOutputShapeException
|
|
|
|
from torch._decomp import decomposition_table
|
|
from torch.testing._internal.common_device_type import ops
|
|
from torch._C import _disabled_torch_function_impl
|
|
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule, has_proxy
|
|
from torch.utils._pytree import tree_map
|
|
from torch import nn
|
|
import re
|
|
|
|
import types
|
|
import functools
|
|
import itertools
|
|
|
|
aten = torch.ops.aten
|
|
|
|
try:
|
|
import sympy # noqa: F401
|
|
HAS_SYMPY = True
|
|
except ImportError:
|
|
HAS_SYMPY = False
|
|
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
|
|
HAS_CUDA = torch.cuda.is_available()
|
|
|
|
|
|
def process_failures():
|
|
"""
|
|
Takes file containing failures like
|
|
|
|
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
|
|
|
|
and processes them into a list of opinfo xfails
|
|
"""
|
|
f = open('pytest_failures')
|
|
failures = f.readlines()
|
|
failures = [i.strip() for i in failures]
|
|
|
|
def process_failure_string(s, matcher):
|
|
out = re.search(matcher, s)
|
|
return out.groups()
|
|
|
|
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
|
|
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
|
|
|
|
def create_normalized_name(op):
|
|
if op.variant_test_name == '':
|
|
s = op.name
|
|
else:
|
|
s = f"{op.name}.{op.variant_test_name}"
|
|
return s.replace('.', '_')
|
|
|
|
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
|
|
|
|
print("symbolic_tensor_failures = {")
|
|
for failure, reason in failures:
|
|
print(f" xfail{remap_opinfo[failure]}, # {reason}")
|
|
print("}")
|
|
|
|
|
|
def copy_func(f):
|
|
"""Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)"""
|
|
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
|
|
argdefs=f.__defaults__,
|
|
closure=f.__closure__)
|
|
g = functools.update_wrapper(g, f)
|
|
g.__kwdefaults__ = f.__kwdefaults__
|
|
return g
|
|
|
|
|
|
# Copied from functorch
|
|
def xfail(op_name, variant_name='', *, device_type=None, dtypes=None):
|
|
return (op_name, variant_name, device_type, dtypes, True)
|
|
|
|
|
|
def skip(op_name, variant_name='', *, device_type=None, dtypes=None):
|
|
return (op_name, variant_name, device_type, dtypes, False)
|
|
|
|
|
|
def skipOps(test_case_name, base_test_name, to_skip):
|
|
all_opinfos = op_db
|
|
for xfail in to_skip:
|
|
op_name, variant_name, device_type, dtypes, expected_failure = xfail
|
|
matching_opinfos = [o for o in all_opinfos
|
|
if o.name == op_name and o.variant_test_name == variant_name]
|
|
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
|
|
for opinfo in matching_opinfos:
|
|
decorators = list(opinfo.decorators)
|
|
if expected_failure:
|
|
decorator = DecorateInfo(unittest.expectedFailure,
|
|
test_case_name, base_test_name,
|
|
device_type=device_type, dtypes=dtypes)
|
|
decorators.append(decorator)
|
|
else:
|
|
decorator = DecorateInfo(unittest.skip("Skipped!"),
|
|
test_case_name, base_test_name,
|
|
device_type=device_type, dtypes=dtypes)
|
|
decorators.append(decorator)
|
|
opinfo.decorators = tuple(decorators)
|
|
|
|
# This decorator doesn't modify fn in any way
|
|
def wrapped(fn):
|
|
return fn
|
|
return wrapped
|
|
|
|
|
|
USE_TORCHVISION = False
|
|
try:
|
|
import torchvision
|
|
USE_TORCHVISION = True
|
|
except ImportError:
|
|
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
|
|
"to install it with commands from pytorch.org, post-fixed with "
|
|
"`--no-deps` to avoid overwriting the pytorch installation",
|
|
UserWarning)
|
|
|
|
|
|
def _create_new_input(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return x
|
|
if x.dtype != torch.float:
|
|
return x + 1
|
|
if x.is_leaf:
|
|
return torch.rand_like(x, requires_grad=x.requires_grad)
|
|
else:
|
|
return torch.rand_like(x)
|
|
|
|
"""
|
|
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
|
|
"""
|
|
class UnwrapTensor(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, tensor: torch.Tensor):
|
|
r = torch.Tensor._make_wrapper_subclass(
|
|
cls,
|
|
tensor.size(),
|
|
dtype=tensor.dtype,
|
|
device=tensor.device,
|
|
layout=tensor.layout,
|
|
requires_grad=tensor.requires_grad,
|
|
)
|
|
r._tensor = tensor
|
|
return r
|
|
|
|
def __repr__(self):
|
|
# TODO: consider all_gather the local tensors for better debugging
|
|
return f"UnwrapTensor({self._tensor})"
|
|
|
|
__torch_function__ = _disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
ret = e
|
|
if isinstance(e, UnwrapTensor):
|
|
ret = e._tensor.cos()
|
|
|
|
return ret
|
|
|
|
args = tree_map(unwrap, args)
|
|
kwargs = tree_map(unwrap, kwargs)
|
|
return func(*args, **kwargs)
|
|
|
|
class TestGenericProxyTensor(TestCase):
|
|
# WARNING: if any of your inputs are index tensors, DO NOT use this
|
|
# function
|
|
def _test(self, f, inps):
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
|
|
new_inps = tree_map(_create_new_input, inps)
|
|
r1 = fx_f(*new_inps)
|
|
r2 = f(*new_inps)
|
|
self.assertEqual(r1, r2)
|
|
|
|
def test_make_fx_simple(self):
|
|
def f(x):
|
|
return torch.sin(x)
|
|
self._test(f, (torch.randn(3),))
|
|
|
|
def test_scalar_device(self, device='cpu'):
|
|
def f(a, b):
|
|
return a + b
|
|
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
|
|
|
|
def test_isolated_graphmodule(self):
|
|
def is_any_sum(gm):
|
|
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
|
|
|
|
def is_any_digamma(gm):
|
|
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
|
|
|
|
def is_any_sigmoid(gm):
|
|
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
|
|
|
|
def inner(x):
|
|
return torch.sum(x)
|
|
|
|
def f(x):
|
|
gm = get_isolated_graphmodule(inner, (x,), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return x + torch.randn(x.shape)
|
|
|
|
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
|
|
# by the outer make_fx call
|
|
traced = make_fx(f)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
|
|
# When factory functions are used, they should not be traced
|
|
# by the outer make_fx call
|
|
def inner_with_factory():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((10, 10), val).sum()
|
|
|
|
def f1(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2(x):
|
|
gm = get_isolated_graphmodule(f1, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify nested make_fx calls don't make factory functions to be leaked
|
|
# into the outer graph
|
|
def f2(x):
|
|
gm = make_fx(f1)(x)
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertTrue(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with non-ProxyTensor modes
|
|
from torch.testing._internal.logging_tensor import LoggingTensorMode
|
|
|
|
def f1_logging(x):
|
|
with LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging(x):
|
|
with LoggingTensorMode(), LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(f1_logging, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with another tensor subclass
|
|
# This case currently doesn't work and should raise an error
|
|
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
|
|
from torch.testing._internal.logging_tensor import LoggingTensor
|
|
|
|
def f1_logging_tensor(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging_tensor(x):
|
|
x = LoggingTensor(x)
|
|
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging_tensor)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
|
|
def f(x):
|
|
y = x.new_zeros(x.size())
|
|
y.copy_(x)
|
|
return y
|
|
|
|
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
|
|
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
|
|
|
|
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
|
|
|
|
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
|
|
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
|
|
# returns a ProxyTensor.
|
|
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
|
|
self.assertExpectedInline(out.code, """\
|
|
|
|
|
|
|
|
def forward(self, x_1):
|
|
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
|
|
copy_ = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
|
|
return copy_
|
|
""")
|
|
|
|
def test_make_fx_reentrant_dispatch(self):
|
|
def f(x):
|
|
return torch.ops.aten.norm.Scalar(x, 2.0)
|
|
|
|
def norm_decomp(x, p=2.0):
|
|
if p != 2.0:
|
|
raise RuntimeError("can't handle with p != 2")
|
|
return torch.sqrt(torch.sum(torch.square(x)))
|
|
|
|
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
|
|
|
|
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
|
|
|
|
for n in traced.graph.nodes:
|
|
self.assertTrue("square" not in str(n.target))
|
|
self.assertTrue("norm" not in str(n.target))
|
|
|
|
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
|
def test_resnet18_backward_trace(self):
|
|
mod = torchvision.models.resnet18()
|
|
|
|
# An old version of this test called the module directly. This works
|
|
# for tracing_mode == "real", but for fake tensors, we also have to
|
|
# ensure that the parameters and buffers get wrapped in fake tensors
|
|
# because free fake tensors are not supported. Fortunately stateless
|
|
# does precisely this for us.
|
|
def f(x, params, buffers):
|
|
for p in params.values():
|
|
p.grad = None
|
|
loss = stateless.functional_call(mod, {**params, **buffers}, (x,)).sum()
|
|
# I could have done this with the functional API, but there is
|
|
# plenty of exercising this; I want to show mutating API still
|
|
# works
|
|
loss.backward()
|
|
return [p.grad for p in params.values()]
|
|
|
|
inp = torch.randn(3, 3, 250, 250)
|
|
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
|
|
|
|
def test_varargs(self):
|
|
def f(*args):
|
|
return sum(args)
|
|
|
|
self._test(f, [torch.randn(2), torch.randn(2)])
|
|
|
|
def test_proxy_tensor(self):
|
|
def f_grad(x):
|
|
val = x.cos().cos().sum()
|
|
return torch.autograd.grad(val, x)
|
|
|
|
def f_backward(x):
|
|
val = x.cos().cos().sum()
|
|
val.backward()
|
|
return x.grad
|
|
|
|
for f in [f_grad, f_backward]:
|
|
self._test(f, [torch.randn(3, requires_grad=True)])
|
|
|
|
def test_inplace_metadata(self):
|
|
def f(x):
|
|
x = x.clone()
|
|
x.unsqueeze_(-1)
|
|
assert x.shape[-1] == 1
|
|
return x
|
|
|
|
self._test(f, [torch.randn(5)])
|
|
|
|
def test_mode_tracing_factory_function(self):
|
|
def f(x):
|
|
return x + torch.randn(x.shape)
|
|
|
|
# default behavior should trace factory functions
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
|
|
self.assertTrue(
|
|
any(
|
|
node.target == aten.randn.default
|
|
for node in traced.graph.nodes
|
|
)
|
|
)
|
|
|
|
def test_make_fx_overloads(self):
|
|
def f(x):
|
|
return x.cos() + torch.randn(x.shape)
|
|
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
|
|
|
|
self.assertTrue(all([isinstance(node.target, torch._ops.OpOverload)
|
|
for node in traced.graph.nodes if node.op == 'call_function']))
|
|
|
|
def test_tensor_constants(self):
|
|
def f():
|
|
val = torch.tensor(float('inf'))
|
|
return torch.full((100, 100), val)
|
|
|
|
self._test(f, [])
|
|
|
|
def test_allclose(self):
|
|
def f(a, b):
|
|
return torch.allclose(a, b)
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "data-dependent",
|
|
lambda: make_fx(f, tracing_mode=self.tracing_mode)(
|
|
torch.zeros(3), torch.zeros(3)
|
|
)
|
|
)
|
|
|
|
def test_constant_proxy_tensor_mut(self):
|
|
def f():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((100, 100), val)
|
|
|
|
g = make_fx(f, tracing_mode=self.tracing_mode)()
|
|
self.assertEqual(g(), f())
|
|
# In case we mutated shared state in the g graph!
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_unbind(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
r, = torch.unbind(val, 0)
|
|
return r.item()
|
|
|
|
g = make_fx(f, tracing_mode=self.tracing_mode)()
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_blowup(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
blowup = val.repeat(1000)
|
|
return blowup.sum().item()
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "data-dependent",
|
|
lambda: make_fx(f, tracing_mode=self.tracing_mode)()
|
|
)
|
|
|
|
def test_constant_random(self):
|
|
def f():
|
|
val = torch.tensor([2.0])
|
|
val.normal_()
|
|
return val.item()
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "data-dependent",
|
|
lambda: make_fx(f, tracing_mode=self.tracing_mode)()
|
|
)
|
|
|
|
def test_decomposition_interpreter(self):
|
|
def fn(x):
|
|
return torch.nn.functional.silu(x)
|
|
|
|
x = torch.rand((4, 4))
|
|
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
|
|
|
|
found_silu = False
|
|
for n in fx_module.graph.nodes:
|
|
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
|
|
found_silu = True
|
|
|
|
self.assertTrue(found_silu)
|
|
|
|
new_graph = torch.fx.Graph()
|
|
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
|
|
DecompositionInterpreter(
|
|
fx_module,
|
|
new_graph=new_graph,
|
|
decomposition_table=silu_decomp_table,
|
|
).run(x)
|
|
|
|
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
|
|
|
|
for n in decomposed_module.graph.nodes:
|
|
self.assertTrue(n.target != torch.ops.aten.silu)
|
|
self.assertTrue(n.target != torch.ops.aten.silu.default)
|
|
|
|
self.assertEqual(fx_module(x), decomposed_module(x))
|
|
|
|
def test_make_fx_model_fwd_bwd(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(x, params):
|
|
out = stateless.functional_call(model, params, x).sum()
|
|
out.backward()
|
|
return list(params.values())
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
|
|
)
|
|
|
|
def test_make_fx_model_double_param(self):
|
|
class Emformer(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim: int = 256,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.layer_norm = torch.nn.LayerNorm(input_dim)
|
|
|
|
def forward(mod_self, x): # noqa: B902
|
|
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
|
|
y = mod_self.layer_norm(x)
|
|
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
|
|
z = mod_self.layer_norm(y)
|
|
return z
|
|
|
|
|
|
gm = make_fx(Emformer())(torch.randn(16, 1, 256))
|
|
ops = set([n.target for n in gm.graph.nodes if n.op == 'call_function'])
|
|
self.assertEqual(len(ops), 2)
|
|
|
|
|
|
def test_make_fx_model_fwd_bwd_wgtupdate(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(args, params, buffers):
|
|
for p in params.values():
|
|
p.grad = None
|
|
if not isinstance(args, Iterable):
|
|
args = [args]
|
|
params_and_buffers = {**params, **buffers}
|
|
out = stateless.functional_call(model, params_and_buffers, args)
|
|
out.sum().backward()
|
|
return [p - 1e-4 * p.grad for p in params.values()]
|
|
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
buffers = dict(model.named_buffers())
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
|
|
def test_trace_subclasses(self):
|
|
def f1(x):
|
|
x = UnwrapTensor(x)
|
|
y = x * 2
|
|
return y
|
|
|
|
def f2(x):
|
|
wrapped = UnwrapTensor(x)
|
|
y = x * wrapped
|
|
return y
|
|
|
|
inp = [torch.randn(5)]
|
|
self._test(f1, inp)
|
|
self._test(f2, inp)
|
|
|
|
def test_partial_decomp(self):
|
|
def f(a, b, c):
|
|
x = torch.addmm(a, b, c)
|
|
y = torch.addmm(a, b, c, beta=2, alpha=1)
|
|
return x + y
|
|
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
|
|
fx_g = make_fx(f)(*inps)
|
|
|
|
def addmm(a, b, c, beta=1, alpha=1):
|
|
if beta == 1 and alpha == 1:
|
|
return NotImplemented
|
|
return beta * a + alpha * (b @ c)
|
|
|
|
decomposed_fx = make_fx(f, {aten.addmm.default: addmm})(*inps)
|
|
|
|
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
|
|
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
|
|
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
|
|
|
|
def test_decomp_of_capture(self):
|
|
val = torch.randn(5)
|
|
|
|
def f(x):
|
|
return x.t() + val.t()
|
|
|
|
def nop(x):
|
|
return x.cos()
|
|
|
|
traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
|
|
self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)
|
|
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_amp_cache(self):
|
|
layer = torch.nn.Conv2d(3, 3, 3).cuda()
|
|
|
|
def f(x, w):
|
|
return torch.nn.functional.conv2d(x, w, stride=layer.stride)
|
|
|
|
inp = torch.randn(4, 3, 10, 10, device='cuda')
|
|
with torch.autocast('cuda'):
|
|
out_graph = make_fx(f)(inp, layer.weight).graph
|
|
out_graph2 = make_fx(f)(inp, layer.weight).graph
|
|
|
|
self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
|
|
for a, b in zip(out_graph.nodes, out_graph2.nodes):
|
|
self.assertEqual(a.op, b.op)
|
|
|
|
def test_has_proxy(self):
|
|
foo = torch.randn(5)
|
|
|
|
def f(x):
|
|
self.assertFalse(has_proxy(foo))
|
|
self.assertTrue(has_proxy(x))
|
|
y = x.cos()
|
|
self.assertTrue(has_proxy(y))
|
|
return y
|
|
|
|
self.assertFalse(has_proxy(torch.randn(5)))
|
|
make_fx(f)(torch.randn(5))
|
|
|
|
def test_strides(self):
|
|
def f(x):
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
|
|
x = x.permute(0, 3, 1, 2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
|
|
return x
|
|
make_fx(f)(torch.randn(2, 3, 4, 5))
|
|
|
|
def f(x):
|
|
self.assertTrue(x.is_contiguous())
|
|
y = x[:, 1]
|
|
self.assertFalse(y.is_contiguous())
|
|
y = x[:, ::2]
|
|
self.assertFalse(y.is_contiguous())
|
|
return x.cos()
|
|
|
|
make_fx(f)(torch.randn(2, 3, 4, 5))
|
|
|
|
class TestGenericProxyTensorReal(TestGenericProxyTensor):
|
|
tracing_mode = "real"
|
|
|
|
|
|
class TestGenericProxyTensorFake(TestGenericProxyTensor):
|
|
tracing_mode = "fake"
|
|
|
|
|
|
def xfail_inherited_tests(tests):
|
|
"""
|
|
Given a list of test names which are defined by a superclass of the
|
|
class this decorates, mark them as expected failure. This is useful
|
|
if you are doing poor man's parameterized tests by subclassing a generic
|
|
test class.
|
|
"""
|
|
def deco(cls):
|
|
for t in tests:
|
|
# NB: expectedFailure operates by mutating the method in question,
|
|
# which is why you have to copy the function first
|
|
setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t))))
|
|
return cls
|
|
return deco
|
|
|
|
|
|
@skipIfNoSympy
|
|
@xfail_inherited_tests([
|
|
"test_inplace_metadata",
|
|
"test_mode_tracing_factory_function",
|
|
"test_make_fx_overloads",
|
|
"test_make_fx_model_fwd_bwd_wgtupdate",
|
|
"test_make_fx_model_fwd_bwd",
|
|
"test_proxy_tensor",
|
|
"test_resnet18_backward_trace",
|
|
"test_trace_subclasses",
|
|
])
|
|
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
|
|
tracing_mode = "symbolic"
|
|
|
|
|
|
del TestGenericProxyTensor
|
|
|
|
|
|
class TestRealProxyTensor(TestCase):
|
|
pass
|
|
|
|
class TestFakeProxyTensor(TestCase):
|
|
def test_issue82547(self):
|
|
x = nn.Parameter(torch.randn(3, 3))
|
|
|
|
def f():
|
|
return torch.ops.aten.t.default(x)
|
|
self.assertRaisesRegex(Exception, "non-Fake Tensor", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
class A(torch.Tensor):
|
|
pass
|
|
|
|
x = A(torch.randn(3, 3))
|
|
self.assertRaisesRegex(TypeError, "no implementation found", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
def test_use_fake_and_tensor(self):
|
|
def f(x, y):
|
|
z = torch.tensor([2.0, 3.0])
|
|
return x + y + z
|
|
|
|
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
|
|
x, y = torch.randn(2), torch.randn(2)
|
|
self.assertEqual(g(x, y), f(x, y))
|
|
|
|
def test_alias(self):
|
|
def f(x):
|
|
return torch.ops.aten.alias(x)
|
|
|
|
r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
|
|
# NB: this should not have a detach call
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1):
|
|
alias = torch.ops.aten.alias.default(x_1); x_1 = None
|
|
return alias""")
|
|
|
|
def _get_node(fx_g, cond):
|
|
for n in fx_g.graph.nodes:
|
|
if cond(n):
|
|
return n
|
|
raise AssertionError
|
|
|
|
def _get_free_symbols(shape_env):
|
|
vars = tuple(shape_env.var_to_val.keys())
|
|
return len([var for var in vars if var not in shape_env.replacements])
|
|
|
|
def _trace(f, *args):
|
|
inps = [torch.randn(arg) for arg in args]
|
|
return make_fx(f, tracing_mode="symbolic")(*inps)
|
|
|
|
# TODO: Need to test the guards themselves specifically as well
|
|
@skipIfNoSympy
|
|
class TestSymbolicTracing(TestCase):
|
|
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
|
|
"""
|
|
Tests fn traced with trace_inputs against test_inputs
|
|
Also returns shape env
|
|
"""
|
|
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
|
|
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
|
|
for input in test_inputs:
|
|
input = [torch.randn(shape) for shape in input]
|
|
rx, ry = traced_f(*input), fn(*input)
|
|
if assert_eq:
|
|
self.assertEqual(rx, ry)
|
|
return traced_f.shape_env
|
|
|
|
|
|
def test_unary(self):
|
|
def f(x):
|
|
assert x.shape[0] < 20
|
|
return x.cos()
|
|
test_inputs = []
|
|
test_inputs.append([(2, 5)])
|
|
test_inputs.append([(6, 8)])
|
|
shape_env = self._test_dynamic(f, [(3, 4)], test_inputs)
|
|
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(4, 5)))
|
|
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(25, 5)))
|
|
# TODO: There should eventually be guards for contiguity, but they're
|
|
# not currently being done yet
|
|
assert len(shape_env.guards) == 1, "\n" + shape_env.format_guards()
|
|
|
|
def test_binary_broadcast(self):
|
|
def f(a, b):
|
|
c = a * b
|
|
return c
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (3, 1)])
|
|
test_inputs.append([(1, 4), (4, 1)])
|
|
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs)
|
|
assert len(shape_env.guards) == 0
|
|
|
|
def test_multiply_shape(self):
|
|
def f(a):
|
|
return torch.empty(a.shape[0] * 2)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0); a_1 = None
|
|
mul = sym_size * 2; sym_size = None
|
|
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
|
|
detach = torch.ops.aten.detach.default(empty); empty = None
|
|
return detach""")
|
|
|
|
def test_symint_to_tensor(self):
|
|
def f(a):
|
|
return a / a.shape[0]
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0)
|
|
div = torch.ops.aten.div.Tensor(a_1, sym_size); a_1 = sym_size = None
|
|
return div""")
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0)
|
|
sym_float = torch.fx.experimental.symbolic_shapes.sym_float(sym_size); sym_size = None
|
|
div = torch.ops.prims.div.default(a_1, sym_float); a_1 = sym_float = None
|
|
return div""")
|
|
|
|
def test_cat(self):
|
|
def f(a, b):
|
|
val = torch.mul(a, b)
|
|
out = torch.cat([val, val])
|
|
if out.shape[0] * out.shape[1] > 20:
|
|
out = out.cos()
|
|
return out
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (6, 1)])
|
|
test_inputs.append([(1, 4), (3, 1)])
|
|
shape_env = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
|
|
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(1, 10), torch.randn(6, 1)))
|
|
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(1, 2), torch.randn(4, 1)))
|
|
assert len(shape_env.guards) == 1
|
|
|
|
def test_new_empty(self):
|
|
def f(a, b):
|
|
return a.new_empty(b.shape[0], b.shape[1] * 2)
|
|
|
|
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False)
|
|
|
|
def test_expand(self):
|
|
def f(a):
|
|
b = torch.mul(a, a)
|
|
c = b.expand(a.shape)
|
|
return c
|
|
|
|
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
|
|
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
|
|
|
|
def test_symbolic_meta(self):
|
|
def f(a, b):
|
|
d = a.new_empty(a.shape[0] + b.shape[0])
|
|
return d
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
|
|
fx_g.graph.eliminate_dead_code()
|
|
fx_g.recompile()
|
|
meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
|
|
meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
|
|
self.assertTrue(meta_c.meta['val'].shape[0].get_pyobj() == meta_d.meta['val'].expr)
|
|
|
|
def _assert_no_guards(self, fx_g, free_symbols):
|
|
assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
|
|
assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()
|
|
|
|
def test_guards_equal(self):
|
|
def f(a, b):
|
|
return a * b
|
|
|
|
# NB: Numbers are carefully chosen to avoid duck shaping from applying
|
|
|
|
fx_g = _trace(f, (5, 6), (5, 6))
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
fx_g = _trace(f, (5, 1), (1, 6))
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
def f(a, b, c, d):
|
|
a = a + b
|
|
cat = torch.cat([c, d])
|
|
return a + cat
|
|
|
|
fx_g = _trace(f, 7, 7, 4, 3)
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
def f(a, b, c, d, e):
|
|
vals = [a, b, c, d, e]
|
|
x = a
|
|
for idx in range(len(vals) - 1):
|
|
x = torch.cat([x, vals[idx]]) + vals[idx + 1]
|
|
return x
|
|
|
|
fx_g = _trace(f, 2, 4, 8, 16, 32)
|
|
self._assert_no_guards(fx_g, 1)
|
|
|
|
def f(a, b):
|
|
a = a.view(b.shape[0])
|
|
return a + b.sum()
|
|
|
|
fx_g = _trace(f, (4, 2), 8)
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
fx_g = _trace(f, (4, 2), (8, 5))
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
fx_g = _trace(f, (2, 3, 4), 24)
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
def test_nonidentity_transitive_guards(self):
|
|
def f(a, b, c, d, e):
|
|
vals = [a, b, c, d, e]
|
|
cat_vals = []
|
|
for idx in range(len(vals) - 1):
|
|
cat_vals.append(torch.cat([vals[idx], vals[idx]]))
|
|
final_vals = []
|
|
for a, b in reversed(list(zip(cat_vals, vals[1:]))):
|
|
final_vals.append(a + b)
|
|
return final_vals
|
|
|
|
fx_g = _trace(f, 2, 4, 8, 16, 32)
|
|
self._assert_no_guards(fx_g, 1)
|
|
|
|
|
|
|
|
|
|
make_fx_failures = {
|
|
# unknown
|
|
xfail('allclose'),
|
|
xfail('equal'),
|
|
# empty
|
|
skip('new_empty'),
|
|
skip('empty_like'),
|
|
skip('empty'),
|
|
# flaky
|
|
skip('linalg.lstsq', 'grad_oriented'),
|
|
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
|
|
skip('linalg.lstsq'), # flaky, probably just a precision issue
|
|
|
|
# data-dependent control flow
|
|
xfail('cov'),
|
|
xfail('istft'),
|
|
xfail('nn.functional.gaussian_nll_loss'),
|
|
xfail('tensor_split'),
|
|
xfail('corrcoef'),
|
|
xfail('quantile'),
|
|
xfail('nanquantile'),
|
|
xfail('narrow'),
|
|
|
|
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
|
|
xfail('sparse.sampled_addmm'),
|
|
|
|
# proxy tensor doesn't support sparse correctly right now
|
|
skip('to_sparse'),
|
|
# segfaults
|
|
skip('block_diag'),
|
|
}
|
|
|
|
fake_tensor_failures = {
|
|
# FakeTensor fallback doesn't work
|
|
xfail('segment_reduce', 'lengths'),
|
|
xfail('multinomial'),
|
|
xfail('cholesky'),
|
|
xfail('cholesky_inverse'),
|
|
# ASAN failures due to divide by 0
|
|
skip('nn.functional.nll_loss'),
|
|
}
|
|
|
|
symbolic_tensor_failures = {
|
|
# Needs complex-value support
|
|
xfail('polar'),
|
|
xfail('linalg.eig'),
|
|
xfail('linalg.eigvals'),
|
|
skip('masked.logsumexp', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('__getitem__', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.amax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.amin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.cumprod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.cumsum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.log_softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.mean', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, ...
|
|
xfail('masked.median', ''), # aten.nanmedian.dim - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.prod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.softmin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.std', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
|
|
xfail('masked.sum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked.var', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
|
|
xfail('addmv', ''), # aten.addmv.default - couldn't find symbolic meta function/decomposition
|
|
xfail('addr', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('aminmax', ''), # aten.aminmax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argsort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argwhere', ''), # aten.nonzero.default - couldn't find symbolic meta function/decomposition
|
|
xfail('as_strided_scatter', ''), # aten.as_strided_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('baddbmm', ''), # aten.baddbmm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bernoulli', ''), # aten.bernoulli.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bucketize', ''), # aten.bucketize.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('cartesian_prod', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('cdist', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cholesky_solve', ''), # Could not run 'aten::_cholesky_solve_helper' with arguments from the 'Meta' back...
|
|
xfail('chunk', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('column_stack', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('constant_pad_nd', ''), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('count_nonzero', ''), # Could not run 'aten::count_nonzero.dim_IntList' with arguments from the 'Meta' ba...
|
|
xfail('cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cummax', ''), # aten.cummax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cummin', ''), # aten.cummin.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cumprod', ''), # aten.cumprod.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cumsum', ''), # aten.cumsum.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cumulative_trapezoid', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('deg2rad', ''), # aten.deg2rad.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diag_embed', ''), # aten.diag_embed.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diagonal', ''), # aten.diagonal.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diagonal_scatter', ''), # aten.diagonal_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('dist', ''), # aten.dist.default - couldn't find symbolic meta function/decomposition
|
|
xfail('dsplit', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('einsum', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('expand_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.hfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.hfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.hfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ihfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ihfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ihfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.irfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.irfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.irfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.rfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.rfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.rfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fill', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('flatten', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('unflatten', ''), # RuntimeError: Trying to call aten.size on a tensor with symbolic shapes...
|
|
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('gather', ''), # aten.gather.default - couldn't find symbolic meta function/decomposition
|
|
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
|
|
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
|
|
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
|
|
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
|
|
xfail('hsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('index_add', ''), # Float
|
|
xfail('index_copy', ''), # Expected a long tensor for index, but got Float
|
|
xfail('index_fill', ''), # aten.index_fill.int_Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('index_put', ''), # aten.index_put.default - couldn't find symbolic meta function/decomposition
|
|
xfail('index_reduce', ''), # Float
|
|
xfail('inner', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('isclose', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lerp', ''), # aten.lerp.Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.cholesky', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.cholesky_ex', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.cond', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('linalg.cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.det', ''), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.det', 'singular'), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.eigh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.eigvalsh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.householder_product', ''), # aten.linalg_householder_product.default - couldn't find symbolic meta funct...
|
|
xfail('linalg.inv', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.inv_ex', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.ldl_factor', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.ldl_factor_ex', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decompos...
|
|
xfail('linalg.ldl_solve', ''), # aten.linalg_ldl_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu', ''), # aten.linalg_lu.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu_factor', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu_factor_ex', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.matrix_power'), # RuntimeError: Trying to call aten.size on a tensor with symbolic shape
|
|
xfail('linalg.matrix_norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.matrix_rank', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.matrix_rank', 'hermitian'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.norm', ''), # TensorImpl do not have numel
|
|
xfail('linalg.norm', 'subgradients_at_zero'), # TensorImpl do not have numel
|
|
xfail('linalg.pinv', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.pinv', 'singular'), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.pinv', 'hermitian'), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decompo...
|
|
xfail('linalg.qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.slogdet', ''), # aten._linalg_slogdet.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.solve', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.solve_ex', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.solve_triangular', ''), # aten.linalg_solve_triangular.default - couldn't find symbolic meta function/de...
|
|
xfail('linalg.svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.svdvals', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.tensorinv', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.tensorsolve', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.vander', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logaddexp2', ''), # aten.logaddexp2.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logcumsumexp', ''), # aten.logcumsumexp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logdet', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lu', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lu_unpack', ''), # aten.lu_unpack.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked_fill', ''), # expected predicate to be bool, got torch.float32
|
|
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
|
|
xfail('matrix_exp', ''), # aten.linalg_matrix_exp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('max', 'reduction_with_dim'), # aten.max.dim - couldn't find symbolic meta function/decomposition
|
|
xfail('median', ''), # Could not run 'aten::median' with arguments from the 'Meta' backend. This could be becau...
|
|
xfail('meshgrid', 'list_of_tensors'), # Tensors of type TensorImpl do not have numel
|
|
xfail('meshgrid', 'variadic_tensors'), # Tensors of type TensorImpl do not have numel
|
|
xfail('min', 'reduction_with_dim'), # aten.min.dim - couldn't find symbolic meta function/decomposition
|
|
xfail('mode', ''), # aten.mode.default - couldn't find symbolic meta function/decomposition
|
|
xfail('msort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
|
|
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.adaptive_avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.adaptive_avg_pool2d', ''), # argument 'size' must be tuple of ints, but found element o...
|
|
xfail('nn.functional.adaptive_avg_pool3d', ''), # aten._adaptive_avg_pool3d.default - couldn't find symbolic meta func...
|
|
xfail('nn.functional.adaptive_max_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
|
|
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
|
|
xfail('nn.functional.avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.avg_pool2d', ''), # aten.avg_pool2d.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.avg_pool3d', ''), # aten.avg_pool3d.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.bilinear', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.conv1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.conv2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.cosine_embedding_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('nn.functional.cosine_similarity', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.ctc_loss'), # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.dropout2d', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.dropout3d', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.dropout', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
|
|
xfail('nn.functional.embedding', ''), # argument 'size' must be tuple of ints, but found element of type tor...
|
|
xfail('nn.functional.feature_alpha_dropout', 'with_train'), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
|
|
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
|
|
xfail('nn.functional.glu', ''), # aten.glu.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.grid_sample', ''), # aten.grid_sampler_2d.default - couldn't find symbolic meta function/decompos...
|
|
xfail('nn.functional.group_norm', ''), # 'torch._C.SymIntNode' and 'int'
|
|
xfail('nn.functional.hinge_embedding_loss', ''), # aten.empty_like.default - couldn't find symbolic meta function/deco...
|
|
xfail('nn.functional.instance_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.interpolate', 'area'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.interpolate', 'bicubic'), # aten.upsample_bicubic2d.vec - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.interpolate', 'bilinear'), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function...
|
|
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
|
|
xfail('nn.functional.interpolate', 'nearest'), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
|
|
xfail('nn.functional.linear', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.local_response_norm', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.margin_ranking_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('nn.functional.max_pool1d', ''), # Trying to call aten.size on a tensor with symbolic shapes.
|
|
xfail('nn.functional.max_pool3d', ''), # aten.max_pool3d_with_indices.default - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.max_unpool1d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.max_unpool2d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.max_unpool3d', 'grad'), # aten.max_unpool3d.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.multi_margin_loss', ''), # Could not run 'aten::multi_margin_loss' with arguments from the...
|
|
xfail('nn.functional.multilabel_margin_loss', ''), # Could not run 'aten::multilabel_margin_loss_forward' with ...
|
|
xfail('nn.functional.normalize', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.pad', 'circular'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.pad', 'constant'), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.pad', 'reflect'), # aten.reflection_pad1d.default - couldn't find symbolic meta function/decompo...
|
|
xfail('nn.functional.pad', 'replicate'), # aten.replication_pad1d.default - couldn't find symbolic meta function/deco...
|
|
xfail('nn.functional.pdist', ''), # Could not run 'aten::_pdist_forward' with arguments from the 'Meta' backend...
|
|
xfail('nn.functional.pixel_shuffle', ''), # aten.pixel_shuffle.default - couldn't find symbolic meta function/decompos...
|
|
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
|
|
xfail('nn.functional.poisson_nll_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('nn.functional.rrelu', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.smooth_l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.unfold', ''), # aten.im2col.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.upsample_bilinear', ''), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function/de...
|
|
xfail('nn.functional.upsample_nearest', ''), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/deco...
|
|
xfail('norm', 'nuc'), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('normal', ''), # aten.normal.Tensor_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('ormqr', ''), # aten.ormqr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('outer', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('pca_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('pinverse', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_1'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_2'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_3'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_4'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('put', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
|
|
xfail('qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('rad2deg', ''), # aten.rad2deg.default - couldn't find symbolic meta function/decomposition
|
|
xfail('renorm', ''), # aten.renorm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('reshape_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('reshape', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('roll', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('round', ''), # aten.round.default - couldn't find symbolic meta function/decomposition
|
|
xfail('round', 'decimals_0'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
|
|
xfail('round', 'decimals_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
|
|
xfail('round', 'decimals_neg_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_add', ''), # aten.scatter_add.default - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter', ''), # aten.scatter.src - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'amax'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'amin'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'mean'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'prod'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'sum'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('searchsorted', ''), # Could not run 'aten::searchsorted.Tensor' with arguments from the 'Meta' backend. ...
|
|
xfail('segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
|
|
xfail('select', ''), # aten.select.int - couldn't find symbolic meta function/decomposition
|
|
xfail('select_scatter', ''), # aten.select_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('slice_scatter', ''), # aten.slice_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('sort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.airy_ai', ''), # aten.special_airy_ai.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_j0', ''), # aten.special_bessel_j0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_j1', ''), # aten.special_bessel_j1.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_y0', ''), # aten.special_bessel_y0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_y1', ''), # aten.special_bessel_y1.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.chebyshev_polynomial_t', ''), # aten.special_chebyshev_polynomial_t.default - couldn't find symbolic me...
|
|
xfail('special.chebyshev_polynomial_u', ''), # aten.special_chebyshev_polynomial_u.default - couldn't find symbolic me...
|
|
xfail('special.entr', ''), # aten.special_entr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.erfcx', ''), # aten.special_erfcx.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.hermite_polynomial_h', ''), # aten.special_hermite_polynomial_h.default - couldn't find symbolic meta f...
|
|
xfail('special.hermite_polynomial_he', ''), # aten.special_hermite_polynomial_he.default - couldn't find symbolic meta...
|
|
xfail('special.laguerre_polynomial_l', ''), # aten.special_laguerre_polynomial_l.default - couldn't find symbolic meta...
|
|
xfail('special.log_ndtr', ''), # aten.special_log_ndtr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.modified_bessel_i0', ''), # aten.special_modified_bessel_i0.default - couldn't find symbolic meta funct...
|
|
xfail('special.modified_bessel_i1', ''), # aten.special_modified_bessel_i1.default - couldn't find symbolic meta funct...
|
|
xfail('special.modified_bessel_k0', ''), # aten.special_modified_bessel_k0.default - couldn't find symbolic meta funct...
|
|
xfail('special.modified_bessel_k1', ''), # aten.special_modified_bessel_k1.default - couldn't find symbolic meta funct...
|
|
xfail('special.ndtri', ''), # aten.special_ndtri.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.polygamma', 'special_polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/...
|
|
xfail('special.scaled_modified_bessel_k0', ''), # aten.special_scaled_modified_bessel_k0.default - couldn't find symbo...
|
|
xfail('special.scaled_modified_bessel_k1', ''), # aten.special_scaled_modified_bessel_k1.default - couldn't find symbo...
|
|
xfail('special.spherical_bessel_j0', ''), # aten.special_spherical_bessel_j0.default - couldn't find symbolic meta fun...
|
|
xfail('special.xlog1py', ''), # aten.special_xlog1py.default - couldn't find symbolic meta function/decomposition
|
|
xfail('split', ''), # 'torch._C.SymIntNode' and 'int'
|
|
xfail('split', 'list_args'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('split_with_sizes', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('stft', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode at...
|
|
xfail('sum_to_size', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('svd_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('symeig', ''), # aten.symeig.default - couldn't find symbolic meta function/decomposition
|
|
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
|
|
xfail('take', ''), # aten.take.default - couldn't find symbolic meta function/decomposition
|
|
xfail('tensordot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('topk', ''), # aten.topk.default - couldn't find symbolic meta function/decomposition
|
|
xfail('trapz', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('trapezoid', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('triangular_solve', ''), # aten.triangular_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('tril', ''), # aten.tril.default - couldn't find symbolic meta function/decomposition
|
|
xfail('triu', ''), # aten.triu.default - couldn't find symbolic meta function/decomposition
|
|
xfail('unfold', ''), # aten.unfold.default - couldn't find symbolic meta function/decomposition
|
|
xfail('view_as_complex', ''), # aten.view_as_complex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('view_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('vsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('zero_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('unbind', ''), # aten.unbind.int - couldn't find symbolic meta function/decomposition
|
|
}
|
|
symbolic_tensor_segfaults = {
|
|
}
|
|
|
|
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
|
|
|
|
def _test_make_fx_helper(self, device, dtype, op, tracing_mode):
|
|
def f(args, kwargs):
|
|
return op.op(*args, **kwargs)
|
|
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
|
|
new_f = None
|
|
|
|
# Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
|
|
for sample_input in itertools.islice(sample_inputs_itr, 100):
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
|
|
try:
|
|
new_f = make_fx(f, tracing_mode=tracing_mode)(args, kwargs)
|
|
except DynamicOutputShapeException as e:
|
|
self.skipTest("Dynamic output shape operation in trace")
|
|
for arg in args:
|
|
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
|
|
arg.uniform_(0, 1)
|
|
try:
|
|
old_out = f(args, kwargs)
|
|
except Exception:
|
|
continue
|
|
new_out = wrapper_set_seed(new_f, args, kwargs)
|
|
self.assertEqual(new_out, old_out)
|
|
|
|
class TestProxyTensorOpInfo(TestCase):
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
|
|
def test_make_fx_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "real")
|
|
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
|
|
def test_make_fx_fake_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "fake")
|
|
|
|
@skipIfNoSympy
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic")
|
|
|
|
|
|
only_for = ("cpu")
|
|
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|