mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Currently, the functional layer infers the output types and shapes by running the operator once. But in cases where special input data are needed to run the operator, the inferrence may fail. This diff allows the caller to manually specify the output types and shapes if the auto infererence may fail. Reviewed By: kennyhorror Differential Revision: D4864003 fbshipit-source-id: ba242586ea384f76d745b29a450497135717bdcc
386 lines
14 KiB
Python
386 lines
14 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
|
|
from caffe2.python import (
|
|
layer_model_instantiator,
|
|
schema,
|
|
workspace,
|
|
)
|
|
from caffe2.python.layer_test_util import (
|
|
LayersTestCase,
|
|
OpSpec,
|
|
)
|
|
|
|
|
|
class TestLayers(LayersTestCase):
|
|
|
|
def testFCWithoutBias(self):
|
|
output_dims = 2
|
|
fc_without_bias = self.model.FCWithoutBias(
|
|
self.model.input_feature_schema.float_features, output_dims)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
fc_without_bias
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
)
|
|
|
|
mat_mul_spec = OpSpec(
|
|
"MatMul",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
init_ops[0].output[0],
|
|
],
|
|
fc_without_bias.field_blobs()
|
|
)
|
|
|
|
self.assertNetContainOps(train_net, [mat_mul_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [mat_mul_spec])
|
|
|
|
def testSamplingTrain(self):
|
|
output_dims = 1000
|
|
|
|
indices = self.new_record(schema.Scalar((np.int32, (10,))))
|
|
sampling_prob = self.new_record(schema.Scalar((np.float32, (10, ))))
|
|
|
|
sampled_fc = self.model.SamplingTrain(
|
|
schema.Struct(
|
|
('input', self.model.input_feature_schema.float_features),
|
|
('indices', indices),
|
|
('sampling_prob', sampling_prob),
|
|
),
|
|
"FC",
|
|
output_dims,
|
|
)
|
|
|
|
# Check that we don't add prediction layer into the model
|
|
self.assertEqual(1, len(self.model.layers))
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
sampled_fc
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
)
|
|
|
|
sampled_fc_layer = self.model.layers[0]
|
|
|
|
gather_w_spec = OpSpec(
|
|
"Gather",
|
|
[
|
|
init_ops[0].output[0],
|
|
indices(),
|
|
],
|
|
[
|
|
sampled_fc_layer._prediction_layer.train_param_blobs[0]
|
|
]
|
|
)
|
|
gather_b_spec = OpSpec(
|
|
"Gather",
|
|
[
|
|
init_ops[1].output[0],
|
|
indices(),
|
|
],
|
|
[
|
|
sampled_fc_layer._prediction_layer.train_param_blobs[1]
|
|
]
|
|
)
|
|
train_fc_spec = OpSpec(
|
|
"FC",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
] + sampled_fc_layer._prediction_layer.train_param_blobs,
|
|
sampled_fc.field_blobs()
|
|
)
|
|
log_spec = OpSpec("Log", [sampling_prob()], [None])
|
|
sub_spec = OpSpec(
|
|
"Sub",
|
|
[sampled_fc.field_blobs()[0], None],
|
|
sampled_fc.field_blobs()
|
|
)
|
|
|
|
train_ops = self.assertNetContainOps(
|
|
train_net,
|
|
[gather_w_spec, gather_b_spec, train_fc_spec, log_spec, sub_spec])
|
|
|
|
self.assertEqual(train_ops[3].output[0], train_ops[4].input[1])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[
|
|
OpSpec(
|
|
"FC",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
init_ops[0].output[0],
|
|
init_ops[1].output[0],
|
|
],
|
|
sampled_fc.field_blobs()
|
|
)
|
|
]
|
|
)
|
|
|
|
def testBatchLRLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1,)))),
|
|
('prediction', schema.Scalar((np.float32, (2,)))),
|
|
('weight', schema.Scalar((np.float64, (1,))))
|
|
))
|
|
loss = self.model.BatchLRLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchSigmoidCrossEntropyLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, (32,)))),
|
|
('prediction', schema.Scalar((np.float32, (32,))))
|
|
))
|
|
loss = self.model.BatchSigmoidCrossEntropyLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchSoftmaxLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, tuple()))),
|
|
('prediction', schema.Scalar((np.float32, (32,))))
|
|
))
|
|
loss = self.model.BatchSoftmaxLoss(input_record)
|
|
self.assertEqual(schema.Struct(
|
|
('softmax', schema.Scalar((np.float32, (32,)))),
|
|
('loss', schema.Scalar(np.float32)),
|
|
), loss)
|
|
|
|
def testUniformSampling(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
input_array = np.array([3, 10, 11, 15, 20, 99], dtype=np.int32)
|
|
schema.FeedRecord(input_record, [input_array])
|
|
num_samples = 20
|
|
num_elements = 100
|
|
uniform_sampling_output = self.model.UniformSampling(
|
|
input_record, num_samples, num_elements)
|
|
self.model.loss = uniform_sampling_output
|
|
self.run_train_net()
|
|
samples = workspace.FetchBlob(uniform_sampling_output.samples())
|
|
sampling_prob = workspace.FetchBlob(
|
|
uniform_sampling_output.sampling_prob())
|
|
self.assertEqual(num_samples, len(samples))
|
|
np.testing.assert_array_equal(input_array, samples[:len(input_array)])
|
|
np.testing.assert_almost_equal(
|
|
np.array([float(num_samples) / num_elements] * num_samples,
|
|
dtype=np.float32),
|
|
sampling_prob
|
|
)
|
|
|
|
def testGatherRecord(self):
|
|
indices = np.array([1, 3, 4], dtype=np.int32)
|
|
dense = np.array(range(20), dtype=np.float32).reshape(10, 2)
|
|
lengths = np.array(range(10), dtype=np.int32)
|
|
items = np.array(range(lengths.sum()), dtype=np.int64)
|
|
items_lengths = np.array(range(lengths.sum()), dtype=np.int32)
|
|
items_items = np.array(range(items_lengths.sum()), dtype=np.int64)
|
|
record = self.new_record(schema.Struct(
|
|
('dense', schema.Scalar(np.float32)),
|
|
('sparse', schema.Struct(
|
|
('list', schema.List(np.int64)),
|
|
('list_of_list', schema.List(schema.List(np.int64))),
|
|
)),
|
|
))
|
|
indices_record = self.new_record(schema.Scalar(np.int32))
|
|
input_record = schema.Struct(
|
|
('indices', indices_record),
|
|
('record', record),
|
|
)
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[indices, dense, lengths, items, lengths, items_lengths,
|
|
items_items])
|
|
gathered_record = self.model.GatherRecord(input_record)
|
|
self.assertTrue(schema.equal_schemas(gathered_record, record))
|
|
|
|
# just to make run_train_net works
|
|
self.model.loss = self.model.StopGradient(gathered_record.dense, 1)
|
|
|
|
self.run_train_net()
|
|
gathered_dense = workspace.FetchBlob(gathered_record.dense())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([dense[i:i + 1] for i in indices]), gathered_dense)
|
|
gathered_lengths = workspace.FetchBlob(
|
|
gathered_record.sparse.list.lengths())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([lengths[i:i + 1] for i in indices]),
|
|
gathered_lengths)
|
|
gathered_items = workspace.FetchBlob(
|
|
gathered_record.sparse.list.items())
|
|
offsets = lengths.cumsum() - lengths
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items[offsets[i]: offsets[i] + lengths[i]]
|
|
for i in indices
|
|
]), gathered_items)
|
|
|
|
gathered_items_lengths = workspace.FetchBlob(
|
|
gathered_record.sparse.list_of_list.items.lengths())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items_lengths[offsets[i]: offsets[i] + lengths[i]]
|
|
for i in indices
|
|
]),
|
|
gathered_items_lengths
|
|
)
|
|
|
|
nested_offsets = []
|
|
nested_lengths = []
|
|
nested_offset = 0
|
|
j = 0
|
|
for l in lengths:
|
|
nested_offsets.append(nested_offset)
|
|
nested_length = 0
|
|
for _i in range(l):
|
|
nested_offset += items_lengths[j]
|
|
nested_length += items_lengths[j]
|
|
j += 1
|
|
nested_lengths.append(nested_length)
|
|
|
|
gathered_items_items = workspace.FetchBlob(
|
|
gathered_record.sparse.list_of_list.items.items())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items_items[nested_offsets[i]:
|
|
nested_offsets[i] + nested_lengths[i]]
|
|
for i in indices
|
|
]),
|
|
gathered_items_items
|
|
)
|
|
|
|
def testFunctionalLayer(self):
|
|
def normalize(net, in_record, out_record):
|
|
mean = net.ReduceFrontMean(in_record(), 1)
|
|
net.Sub(
|
|
[in_record(), mean],
|
|
out_record[0](),
|
|
broadcast=1)
|
|
normalized = self.model.Functional(
|
|
self.model.input_feature_schema.float_features, 1,
|
|
normalize, name="normalizer")
|
|
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized[0].set_type((np.float32, 32))
|
|
self.model.FC(normalized[0], 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelper(self):
|
|
mean = self.model.ReduceFrontMean(
|
|
self.model.input_feature_schema.float_features, 1)
|
|
normalized = self.model.Sub(
|
|
schema.Tuple(
|
|
self.model.input_feature_schema.float_features, mean[0]),
|
|
1, broadcast=1)
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized[0].set_type((np.float32, (32,)))
|
|
self.model.FC(normalized[0], 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelperAutoInference(self):
|
|
softsign = self.model.Softsign(
|
|
schema.Tuple(self.model.input_feature_schema.float_features),
|
|
1)
|
|
assert len(softsign.field_types()) == 1
|
|
assert softsign.field_types()[0].base == np.float32
|
|
assert softsign.field_types()[0].shape == (32,)
|
|
self.model.FC(softsign[0], 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 2
|
|
assert ops[0].type == "Softsign"
|
|
assert ops[1].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[0].output) == 1
|
|
assert ops[0].output[0] in ops[1].input
|
|
|
|
def testFunctionalLayerHelperAutoInferenceScalar(self):
|
|
loss = self.model.AveragedLoss(self.model.input_feature_schema, 1)
|
|
self.assertEqual(1, len(loss.field_types()))
|
|
self.assertEqual(np.float32, loss.field_types()[0].base)
|
|
self.assertEqual(tuple(), loss.field_types()[0].shape)
|
|
|
|
def testFunctionalLayerInputCoercion(self):
|
|
one = self.model.global_constants['ONE']
|
|
two = self.model.Add([one, one], 1)
|
|
self.model.loss = two
|
|
self.run_train_net()
|
|
data = workspace.FetchBlob(two.field_blobs()[0])
|
|
np.testing.assert_array_equal([2.0], data)
|
|
|
|
def testFunctionalLayerWithOutputNames(self):
|
|
k = 3
|
|
topk = self.model.TopK(
|
|
self.model.input_feature_schema,
|
|
output_names_or_num=['values', 'indices'],
|
|
k=k,
|
|
)
|
|
self.assertEqual(2, len(topk.field_types()))
|
|
self.assertEqual(np.float32, topk.field_types()[0].base)
|
|
self.assertEqual((k,), topk.field_types()[0].shape)
|
|
self.assertEqual(np.int32, topk.field_types()[1].base)
|
|
self.assertEqual((k,), topk.field_types()[1].shape)
|
|
self.assertEqual(['TopK/values', 'TopK/indices'], topk.field_blobs())
|
|
|
|
def testFunctionalLayerWithOutputDtypes(self):
|
|
loss = self.model.AveragedLoss(
|
|
self.model.input_feature_schema,
|
|
1,
|
|
output_dtypes=(np.float32, (1,)),
|
|
)
|
|
self.assertEqual(1, len(loss.field_types()))
|
|
self.assertEqual(np.float32, loss.field_types()[0].base)
|
|
self.assertEqual((1,), loss.field_types()[0].shape)
|