pytorch/caffe2/python/layers_test.py
Huazhong Ning ad6b53e401 allow to specify output dtypes for functional layers
Summary:
Currently, the functional layer infers the output types and shapes by running the operator once.
But in cases where special input data are needed to run the operator, the inferrence may fail.
This diff allows the caller to manually specify the output types and shapes if the auto infererence may fail.

Reviewed By: kennyhorror

Differential Revision: D4864003

fbshipit-source-id: ba242586ea384f76d745b29a450497135717bdcc
2017-04-18 16:34:52 -07:00

386 lines
14 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from caffe2.python import (
layer_model_instantiator,
schema,
workspace,
)
from caffe2.python.layer_test_util import (
LayersTestCase,
OpSpec,
)
class TestLayers(LayersTestCase):
def testFCWithoutBias(self):
output_dims = 2
fc_without_bias = self.model.FCWithoutBias(
self.model.input_feature_schema.float_features, output_dims)
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
fc_without_bias
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
]
)
mat_mul_spec = OpSpec(
"MatMul",
[
self.model.input_feature_schema.float_features(),
init_ops[0].output[0],
],
fc_without_bias.field_blobs()
)
self.assertNetContainOps(train_net, [mat_mul_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [mat_mul_spec])
def testSamplingTrain(self):
output_dims = 1000
indices = self.new_record(schema.Scalar((np.int32, (10,))))
sampling_prob = self.new_record(schema.Scalar((np.float32, (10, ))))
sampled_fc = self.model.SamplingTrain(
schema.Struct(
('input', self.model.input_feature_schema.float_features),
('indices', indices),
('sampling_prob', sampling_prob),
),
"FC",
output_dims,
)
# Check that we don't add prediction layer into the model
self.assertEqual(1, len(self.model.layers))
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
sampled_fc
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("UniformFill", None, None),
]
)
sampled_fc_layer = self.model.layers[0]
gather_w_spec = OpSpec(
"Gather",
[
init_ops[0].output[0],
indices(),
],
[
sampled_fc_layer._prediction_layer.train_param_blobs[0]
]
)
gather_b_spec = OpSpec(
"Gather",
[
init_ops[1].output[0],
indices(),
],
[
sampled_fc_layer._prediction_layer.train_param_blobs[1]
]
)
train_fc_spec = OpSpec(
"FC",
[
self.model.input_feature_schema.float_features(),
] + sampled_fc_layer._prediction_layer.train_param_blobs,
sampled_fc.field_blobs()
)
log_spec = OpSpec("Log", [sampling_prob()], [None])
sub_spec = OpSpec(
"Sub",
[sampled_fc.field_blobs()[0], None],
sampled_fc.field_blobs()
)
train_ops = self.assertNetContainOps(
train_net,
[gather_w_spec, gather_b_spec, train_fc_spec, log_spec, sub_spec])
self.assertEqual(train_ops[3].output[0], train_ops[4].input[1])
predict_net = self.get_predict_net()
self.assertNetContainOps(
predict_net,
[
OpSpec(
"FC",
[
self.model.input_feature_schema.float_features(),
init_ops[0].output[0],
init_ops[1].output[0],
],
sampled_fc.field_blobs()
)
]
)
def testBatchLRLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float64, (1,)))),
('prediction', schema.Scalar((np.float32, (2,)))),
('weight', schema.Scalar((np.float64, (1,))))
))
loss = self.model.BatchLRLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchSigmoidCrossEntropyLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, (32,)))),
('prediction', schema.Scalar((np.float32, (32,))))
))
loss = self.model.BatchSigmoidCrossEntropyLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchSoftmaxLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, tuple()))),
('prediction', schema.Scalar((np.float32, (32,))))
))
loss = self.model.BatchSoftmaxLoss(input_record)
self.assertEqual(schema.Struct(
('softmax', schema.Scalar((np.float32, (32,)))),
('loss', schema.Scalar(np.float32)),
), loss)
def testUniformSampling(self):
input_record = self.new_record(schema.Scalar(np.int32))
input_array = np.array([3, 10, 11, 15, 20, 99], dtype=np.int32)
schema.FeedRecord(input_record, [input_array])
num_samples = 20
num_elements = 100
uniform_sampling_output = self.model.UniformSampling(
input_record, num_samples, num_elements)
self.model.loss = uniform_sampling_output
self.run_train_net()
samples = workspace.FetchBlob(uniform_sampling_output.samples())
sampling_prob = workspace.FetchBlob(
uniform_sampling_output.sampling_prob())
self.assertEqual(num_samples, len(samples))
np.testing.assert_array_equal(input_array, samples[:len(input_array)])
np.testing.assert_almost_equal(
np.array([float(num_samples) / num_elements] * num_samples,
dtype=np.float32),
sampling_prob
)
def testGatherRecord(self):
indices = np.array([1, 3, 4], dtype=np.int32)
dense = np.array(range(20), dtype=np.float32).reshape(10, 2)
lengths = np.array(range(10), dtype=np.int32)
items = np.array(range(lengths.sum()), dtype=np.int64)
items_lengths = np.array(range(lengths.sum()), dtype=np.int32)
items_items = np.array(range(items_lengths.sum()), dtype=np.int64)
record = self.new_record(schema.Struct(
('dense', schema.Scalar(np.float32)),
('sparse', schema.Struct(
('list', schema.List(np.int64)),
('list_of_list', schema.List(schema.List(np.int64))),
)),
))
indices_record = self.new_record(schema.Scalar(np.int32))
input_record = schema.Struct(
('indices', indices_record),
('record', record),
)
schema.FeedRecord(
input_record,
[indices, dense, lengths, items, lengths, items_lengths,
items_items])
gathered_record = self.model.GatherRecord(input_record)
self.assertTrue(schema.equal_schemas(gathered_record, record))
# just to make run_train_net works
self.model.loss = self.model.StopGradient(gathered_record.dense, 1)
self.run_train_net()
gathered_dense = workspace.FetchBlob(gathered_record.dense())
np.testing.assert_array_equal(
np.concatenate([dense[i:i + 1] for i in indices]), gathered_dense)
gathered_lengths = workspace.FetchBlob(
gathered_record.sparse.list.lengths())
np.testing.assert_array_equal(
np.concatenate([lengths[i:i + 1] for i in indices]),
gathered_lengths)
gathered_items = workspace.FetchBlob(
gathered_record.sparse.list.items())
offsets = lengths.cumsum() - lengths
np.testing.assert_array_equal(
np.concatenate([
items[offsets[i]: offsets[i] + lengths[i]]
for i in indices
]), gathered_items)
gathered_items_lengths = workspace.FetchBlob(
gathered_record.sparse.list_of_list.items.lengths())
np.testing.assert_array_equal(
np.concatenate([
items_lengths[offsets[i]: offsets[i] + lengths[i]]
for i in indices
]),
gathered_items_lengths
)
nested_offsets = []
nested_lengths = []
nested_offset = 0
j = 0
for l in lengths:
nested_offsets.append(nested_offset)
nested_length = 0
for _i in range(l):
nested_offset += items_lengths[j]
nested_length += items_lengths[j]
j += 1
nested_lengths.append(nested_length)
gathered_items_items = workspace.FetchBlob(
gathered_record.sparse.list_of_list.items.items())
np.testing.assert_array_equal(
np.concatenate([
items_items[nested_offsets[i]:
nested_offsets[i] + nested_lengths[i]]
for i in indices
]),
gathered_items_items
)
def testFunctionalLayer(self):
def normalize(net, in_record, out_record):
mean = net.ReduceFrontMean(in_record(), 1)
net.Sub(
[in_record(), mean],
out_record[0](),
broadcast=1)
normalized = self.model.Functional(
self.model.input_feature_schema.float_features, 1,
normalize, name="normalizer")
# Attach metadata to one of the outputs and use it in FC
normalized[0].set_type((np.float32, 32))
self.model.FC(normalized[0], 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 3
assert ops[0].type == "ReduceFrontMean"
assert ops[1].type == "Sub"
assert ops[2].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[1].output) == 1
assert ops[1].output[0] in ops[2].input
def testFunctionalLayerHelper(self):
mean = self.model.ReduceFrontMean(
self.model.input_feature_schema.float_features, 1)
normalized = self.model.Sub(
schema.Tuple(
self.model.input_feature_schema.float_features, mean[0]),
1, broadcast=1)
# Attach metadata to one of the outputs and use it in FC
normalized[0].set_type((np.float32, (32,)))
self.model.FC(normalized[0], 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 3
assert ops[0].type == "ReduceFrontMean"
assert ops[1].type == "Sub"
assert ops[2].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[1].output) == 1
assert ops[1].output[0] in ops[2].input
def testFunctionalLayerHelperAutoInference(self):
softsign = self.model.Softsign(
schema.Tuple(self.model.input_feature_schema.float_features),
1)
assert len(softsign.field_types()) == 1
assert softsign.field_types()[0].base == np.float32
assert softsign.field_types()[0].shape == (32,)
self.model.FC(softsign[0], 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 2
assert ops[0].type == "Softsign"
assert ops[1].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[0].output) == 1
assert ops[0].output[0] in ops[1].input
def testFunctionalLayerHelperAutoInferenceScalar(self):
loss = self.model.AveragedLoss(self.model.input_feature_schema, 1)
self.assertEqual(1, len(loss.field_types()))
self.assertEqual(np.float32, loss.field_types()[0].base)
self.assertEqual(tuple(), loss.field_types()[0].shape)
def testFunctionalLayerInputCoercion(self):
one = self.model.global_constants['ONE']
two = self.model.Add([one, one], 1)
self.model.loss = two
self.run_train_net()
data = workspace.FetchBlob(two.field_blobs()[0])
np.testing.assert_array_equal([2.0], data)
def testFunctionalLayerWithOutputNames(self):
k = 3
topk = self.model.TopK(
self.model.input_feature_schema,
output_names_or_num=['values', 'indices'],
k=k,
)
self.assertEqual(2, len(topk.field_types()))
self.assertEqual(np.float32, topk.field_types()[0].base)
self.assertEqual((k,), topk.field_types()[0].shape)
self.assertEqual(np.int32, topk.field_types()[1].base)
self.assertEqual((k,), topk.field_types()[1].shape)
self.assertEqual(['TopK/values', 'TopK/indices'], topk.field_blobs())
def testFunctionalLayerWithOutputDtypes(self):
loss = self.model.AveragedLoss(
self.model.input_feature_schema,
1,
output_dtypes=(np.float32, (1,)),
)
self.assertEqual(1, len(loss.field_types()))
self.assertEqual(np.float32, loss.field_types()[0].base)
self.assertEqual((1,), loss.field_types()[0].shape)