mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This is useful when data has standalone sequences which are not connected to each other by any meaningful context Reviewed By: yqwangustc Differential Revision: D4835164 fbshipit-source-id: f95626acc26acc3eba3bca7efb08ed1dbdb36c83
248 lines
10 KiB
Python
248 lines
10 KiB
Python
## @package recurrent
|
|
# Module caffe2.python.recurrent
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core
|
|
from caffe2.python.scope import CurrentNameScope
|
|
|
|
|
|
|
|
def recurrent_net(
|
|
net, cell_net, inputs, initial_cell_inputs,
|
|
links, timestep=None, scope=None, outputs_with_grads=(0,),
|
|
recompute_blobs_on_backward=None, forward_only=False,
|
|
):
|
|
'''
|
|
net: the main net operator should be added to
|
|
|
|
cell_net: cell_net which is executed in a recurrent fasion
|
|
|
|
inputs: sequences to be fed into the recurrent net. Currently only one input
|
|
is supported. It has to be in a format T x N x (D1...Dk) where T is lengths
|
|
of the sequence. N is a batch size and (D1...Dk) are the rest of dimentions
|
|
|
|
initial_cell_inputs: inputs of the cell_net for the 0 timestamp.
|
|
Format for each input is:
|
|
(cell_net_input_name, external_blob_with_data)
|
|
|
|
links: a dictionary from cell_net input names in moment t+1 and
|
|
output names of moment t. Currently we assume that each output becomes
|
|
an input for the next timestep.
|
|
|
|
timestep: name of the timestep blob to be used. If not provided "timestep"
|
|
is used.
|
|
|
|
scope: Internal blobs are going to be scoped in a format
|
|
<scope_name>/<blob_name>
|
|
If not provided we generate a scope name automatically
|
|
|
|
outputs_with_grads : position indices of output blobs which will receive
|
|
error gradient (from outside recurrent network) during backpropagation
|
|
|
|
recompute_blobs_on_backward: specify a list of blobs that will be
|
|
recomputed for backward pass, and thus need not to be
|
|
stored for each forward timestep.
|
|
|
|
forward_only: if True, only forward steps are executed
|
|
'''
|
|
assert len(inputs) == 1, "Only one input blob is supported so far"
|
|
|
|
# Validate scoping
|
|
for einp in cell_net.Proto().external_input:
|
|
assert einp.startswith(CurrentNameScope()), \
|
|
'''
|
|
Cell net external inputs are not properly scoped, use
|
|
AddScopedExternalInputs() when creating them
|
|
'''
|
|
|
|
input_blobs = [str(i[0]) for i in inputs]
|
|
initial_input_blobs = [str(x[1]) for x in initial_cell_inputs]
|
|
op_name = net.NextName('recurrent')
|
|
|
|
def s(name):
|
|
# We have to manually scope due to our internal/external blob
|
|
# relationships.
|
|
scope_name = op_name if scope is None else scope
|
|
return "{}/{}".format(str(scope_name), str(name))
|
|
|
|
# determine inputs that are considered to be references
|
|
# it is those that are not referred to in inputs or initial_cell_inputs
|
|
known_inputs = map(str, input_blobs + initial_input_blobs)
|
|
known_inputs += [str(x[0]) for x in initial_cell_inputs]
|
|
if timestep is not None:
|
|
known_inputs.append(str(timestep))
|
|
references = [
|
|
core.BlobReference(b) for b in cell_net.Proto().external_input
|
|
if b not in known_inputs]
|
|
|
|
inner_outputs = list(cell_net.Proto().external_output)
|
|
# These gradients are expected to be available during the backward pass
|
|
inner_outputs_map = {o: o + '_grad' for o in inner_outputs}
|
|
recompute_blobs_on_backward = set()
|
|
|
|
# compute the backward pass of the cell net
|
|
if not forward_only:
|
|
backward_ops, backward_mapping = core.GradientRegistry.GetBackwardPass(
|
|
cell_net.Proto().op, inner_outputs_map)
|
|
backward_mapping = {str(k): v for k, v in backward_mapping.items()}
|
|
|
|
backward_cell_net = core.Net("RecurrentBackwardStep")
|
|
del backward_cell_net.Proto().op[:]
|
|
|
|
if recompute_blobs_on_backward is not None:
|
|
# Insert operators to re-compute the specified blobs.
|
|
# They are added in the same order as for the forward pass, thus
|
|
# the order is correct.
|
|
recompute_blobs_on_backward = {str(b) for b in
|
|
recompute_blobs_on_backward}
|
|
|
|
for op in cell_net.Proto().op:
|
|
if not recompute_blobs_on_backward.isdisjoint(set(op.output)):
|
|
backward_cell_net.Proto().op.extend([op])
|
|
# This fires if other outputs than the declared
|
|
# are computed by the ops that are recomputed
|
|
assert set(op.output).issubset(recompute_blobs_on_backward)
|
|
|
|
backward_cell_net.Proto().op.extend(backward_ops)
|
|
# compute blobs used but not defined in the backward pass
|
|
backward_ssa, backward_blob_versions = core.get_ssa(
|
|
backward_cell_net.Proto())
|
|
undefined = core.get_undefined_blobs(backward_ssa)
|
|
|
|
# also add to the output list the intermediate outputs of fwd_step that
|
|
# are used by backward.
|
|
ssa, blob_versions = core.get_ssa(cell_net.Proto())
|
|
scratches = [
|
|
blob for (blob, ver) in blob_versions.items()
|
|
if ver > 0 and
|
|
blob in undefined and
|
|
blob not in cell_net.Proto().external_output]
|
|
backward_cell_net.Proto().external_input.extend(scratches)
|
|
backward_cell_net.Proto().type = 'simple'
|
|
else:
|
|
backward_cell_net = None
|
|
|
|
all_inputs = [i[1] for i in inputs] + [
|
|
x[1] for x in initial_cell_inputs] + references
|
|
all_outputs = []
|
|
|
|
cell_net.Proto().type = 'simple'
|
|
|
|
# Internal arguments used by RecurrentNetwork operator
|
|
|
|
# Links are in the format blob_name, recurrent_states, offset.
|
|
# In the moment t we know that corresponding data block is at
|
|
# t + offset position in the recurrent_states tensor
|
|
forward_links = []
|
|
backward_links = []
|
|
|
|
# Aliases are used to expose outputs to external world
|
|
# Format (internal_blob, external_blob, offset)
|
|
# Negative offset stands for going from the end,
|
|
# positive - from the beginning
|
|
aliases = []
|
|
|
|
# States held inputs to the cell net
|
|
recurrent_states = []
|
|
|
|
for cell_input, _ in initial_cell_inputs:
|
|
cell_input = str(cell_input)
|
|
# Recurrent_states is going to be (T + 1) x ...
|
|
# It stores all inputs and outputs of the cell net over time.
|
|
# Or their gradients in the case of the backward pass.
|
|
state = s(cell_input + "_states")
|
|
states_grad = state + "_grad"
|
|
cell_output = links[str(cell_input)]
|
|
forward_links.append((cell_input, state, 0))
|
|
forward_links.append((cell_output, state, 1))
|
|
|
|
aliases.append((state, cell_output + "_all", 1))
|
|
aliases.append((state, cell_output + "_last", -1))
|
|
all_outputs.extend([cell_output + "_all", cell_output + "_last"])
|
|
|
|
recurrent_states.append(state)
|
|
|
|
if backward_cell_net is not None:
|
|
backward_links.append((cell_output + "_grad", states_grad, 1))
|
|
backward_cell_net.Proto().external_input.append(
|
|
str(cell_output) + "_grad")
|
|
|
|
recurrent_input_grad = cell_input + "_grad"
|
|
if not backward_blob_versions.get(recurrent_input_grad, 0):
|
|
# If nobody writes to this recurrent input gradient, we need
|
|
# to make sure it gets to the states grad blob after all.
|
|
# We do this by using backward_links which triggers an alias
|
|
# This logic is being used for example in a SumOp case
|
|
backward_links.append(
|
|
(backward_mapping[cell_input], states_grad, 0))
|
|
else:
|
|
backward_links.append((cell_input + "_grad", states_grad, 0))
|
|
|
|
for input_t, input_blob in inputs:
|
|
forward_links.append((str(input_t), str(input_blob), 0))
|
|
|
|
if backward_cell_net is not None:
|
|
for input_t, input_blob in inputs:
|
|
backward_links.append((
|
|
backward_mapping[str(input_t)], str(input_blob) + "_grad", 0
|
|
))
|
|
backward_cell_net.Proto().external_input.extend(
|
|
cell_net.Proto().external_input)
|
|
backward_cell_net.Proto().external_input.extend(
|
|
cell_net.Proto().external_output)
|
|
|
|
def unpack_triple(x):
|
|
if x:
|
|
a, b, c = zip(*x)
|
|
return a, b, c
|
|
return [], [], []
|
|
|
|
# Splitting to separate lists so we can pass them to c++
|
|
# where we ensemle them back
|
|
link_internal, link_external, link_offset = unpack_triple(forward_links)
|
|
alias_src, alias_dst, alias_offset = unpack_triple(aliases)
|
|
|
|
recurrent_inputs = [str(x[1]) for x in initial_cell_inputs]
|
|
|
|
backward_args = {}
|
|
if backward_cell_net is not None:
|
|
backward_link_internal, backward_link_external, backward_link_offset = \
|
|
unpack_triple(backward_links)
|
|
params = [x for x in references if x in backward_mapping.keys()]
|
|
param_grads = [str(backward_mapping[x])
|
|
for x in references
|
|
if x in backward_mapping.keys()]
|
|
backward_args = {
|
|
'param': map(all_inputs.index, params),
|
|
'backward_link_internal': map(str, backward_link_internal),
|
|
'backward_link_external': map(str, backward_link_external),
|
|
'backward_link_offset': backward_link_offset,
|
|
'backward_step_net': str(backward_cell_net.Proto()),
|
|
'outputs_with_grads': outputs_with_grads,
|
|
'recompute_blobs_on_backward': map(
|
|
str, recompute_blobs_on_backward),
|
|
'param_grads': param_grads,
|
|
}
|
|
|
|
results = net.RecurrentNetwork(
|
|
all_inputs,
|
|
all_outputs + [s("step_workspaces")],
|
|
alias_src=alias_src,
|
|
alias_dst=map(str, alias_dst),
|
|
alias_offset=alias_offset,
|
|
recurrent_states=recurrent_states,
|
|
initial_recurrent_state_ids=map(all_inputs.index, recurrent_inputs),
|
|
link_internal=map(str, link_internal),
|
|
link_external=map(str, link_external),
|
|
link_offset=link_offset,
|
|
step_net=str(cell_net.Proto()),
|
|
timestep="timestep" if timestep is None else str(timestep),
|
|
**backward_args
|
|
)
|
|
# The last output is a list of step workspaces,
|
|
# which is only needed internally for gradient propogation
|
|
return results[:-1]
|