pytorch/caffe2/python/layers/sampling_train.py
Kittipat Virochsiri 5c32c82a6d Add option to subtract log odd from sampled trained prediction.
Summary: Useful for sampled softmax training

Differential Revision: D4782673

fbshipit-source-id: 88195de60070a0bc16f5e06b9aad4dffd0484546
2017-04-03 17:50:58 -07:00

74 lines
2.3 KiB
Python

## @package sampling_train
# Module caffe2.python.layers.sampling_train
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer, get_layer_class
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
class SamplingTrain(ModelLayer):
def __init__(
self,
model,
input_record,
prediction_layer,
output_dims,
subtract_log_odd=True,
name='sampling_train',
**kwargs
):
super(SamplingTrain, self).__init__(
model, name, input_record, **kwargs
)
layer_class = get_layer_class(prediction_layer)
assert issubclass(layer_class, SamplingTrainableMixin)
assert schema.is_schema_subset(
schema.Struct(
('indices', schema.Scalar()),
('input', schema.Scalar()),
),
input_record
)
self.subtract_log_odd = subtract_log_odd
if self.subtract_log_odd:
assert 'sampling_prob' in input_record
self._prediction_layer = layer_class(
model,
input_record.input,
output_dims=output_dims,
**kwargs
)
self._prediction_layer.train_param_blobs = [
model.net.NextBlob(str(blob) + '_sampled')
for blob in self._prediction_layer.param_blobs
]
self.params = self._prediction_layer.params
self.output_schema = self._prediction_layer.output_schema
def add_ops(self, net):
self._prediction_layer.add_ops(net)
def add_train_ops(self, net):
for full_blob, sampled_blob in zip(
self._prediction_layer.param_blobs,
self._prediction_layer.train_param_blobs
):
net.Gather([full_blob, self.input_record.indices()], sampled_blob)
self._prediction_layer.add_train_ops(net)
if not self.subtract_log_odd:
return
log_q = net.Log(self.input_record.sampling_prob(),
net.NextScopedBlob("log_q"))
net.Sub([self.output_schema(), log_q], self.output_schema(),
broadcast=1, use_grad_hack=1)