pytorch/caffe2/python/layer_model_instantiator.py
Kittipat Virochsiri 22d4eaeb9e JoinContext
Summary:
Layer to allow model to follow different paths for each instantiation context and join later. Together with tagging system cleanup (this is a separate issue), this should reduce the need to write a layer to differentiate between context.

Re: tagging system clean up, we should make exclusion more explicit: EXCLUDE_FROM_<CONTEXT>. This would simplify instation code. TRAIN_ONLY should become a set of all EXCLUDE_FROM_*, except EXCLUDE_FROM_TRAIN.

Reviewed By: kennyhorror

Differential Revision: D4964949

fbshipit-source-id: ba6453b0deb92d1989404efb9d86e1ed25297202
2017-05-02 17:32:26 -07:00

74 lines
2.6 KiB
Python

## @package layer_model_instantiator
# Module caffe2.python.layer_model_instantiator
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
from caffe2.python.layers.layers import InstantiationContext
from caffe2.python.layers.tags import Tags
def _filter_layers(layers, include_tags):
if include_tags is None:
return layers
include_tags = set(include_tags)
return filter(lambda l: not include_tags.isdisjoint(l.tags), layers)
def generate_predict_net(model, include_tags=None):
predict_net = core.Net('predict_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.EXCLUDE_FROM_PREDICTION not in layer.tags:
layer.add_operators(
predict_net, context=InstantiationContext.PREDICTION)
predict_net.set_input_record(model.input_feature_schema.clone())
predict_net.set_output_record(model.output_schema.clone())
return predict_net
def generate_eval_net(model, include_tags=None):
eval_net = core.Net('eval_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.EXCLUDE_FROM_EVAL not in layer.tags:
layer.add_operators(eval_net, context=InstantiationContext.EVAL)
input_schema = model.input_feature_schema + model.trainer_extra_schema
output_schema = model.output_schema + model.metrics_schema
eval_net.set_input_record(input_schema)
eval_net.set_output_record(output_schema)
return eval_net
def _generate_training_net_only(model, include_tags=None):
train_net = core.Net('train_net')
train_init_net = model.create_init_net('train_init_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.EXCLUDE_FROM_TRAIN not in layer.tags:
layer.add_operators(train_net, train_init_net)
input_schema = model.input_feature_schema + model.trainer_extra_schema
output_schema = model.output_schema + model.metrics_schema
train_net.set_input_record(input_schema)
train_net.set_output_record(output_schema)
return train_init_net, train_net
def generate_training_nets_forward_only(model, include_tags=None):
train_init_net, train_net = _generate_training_net_only(model, include_tags)
return train_init_net, train_net
def generate_training_nets(model, include_tags=None):
train_init_net, train_net = _generate_training_net_only(model, include_tags)
loss = model.loss
grad_map = train_net.AddGradientOperators(loss.field_blobs())
model.apply_optimizers(train_net, train_init_net, grad_map)
return train_init_net, train_net