mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Moved code for global norm-based gradient clipping from fb specific workflows (seq2seq) to the open-source caffe2 optimizer library Reviewed By: jhcross Differential Revision: D5637453 fbshipit-source-id: 7e73c9a1c97c28a152c188467b27a6449f79242e
671 lines
22 KiB
Python
671 lines
22 KiB
Python
## @package optimizer
|
|
# Module caffe2.python.optimizer
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from collections import namedtuple, defaultdict
|
|
from past.builtins import basestring
|
|
|
|
from caffe2.python import core, scope
|
|
from caffe2.python.modeling import parameter_info
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
|
|
_OPTIMIZER_ITERATION_NAME = "optimizer_iteration"
|
|
|
|
AuxOptimizerParams = namedtuple("AuxOptimizerParams", ["local", "shared"])
|
|
_optimizer_instance_count = defaultdict(int)
|
|
|
|
|
|
class Optimizer(object):
|
|
def __init__(self):
|
|
self._aux_params = AuxOptimizerParams(local=[], shared=[])
|
|
self._instance_num = _optimizer_instance_count[self.__class__.__name__]
|
|
_optimizer_instance_count[self.__class__.__name__] += 1
|
|
self._norm_ratio = None
|
|
|
|
'''
|
|
Adds optimization operators to the net for given parameter and its gradient
|
|
Parameter is specified by either 'param' being a ParameterInfo object.
|
|
In this case param.grad has to be set
|
|
|
|
Or by 'param' being a BlobReference and 'grad' being a BlobReference for its
|
|
gradient.
|
|
'''
|
|
def __call__(self, net, param_init_net, param, grad=None):
|
|
if grad is None:
|
|
assert isinstance(param, parameter_info.ParameterInfo)
|
|
assert param.grad is not None
|
|
else:
|
|
if isinstance(param, basestring):
|
|
param = core.BlobReference(param)
|
|
param = parameter_info.ParameterInfo(
|
|
param_id=None, param=param, grad=grad)
|
|
|
|
self._run(net, param_init_net, param)
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
raise Exception("Not Impelemented")
|
|
|
|
def get_cpu_blob_name(self, base_str):
|
|
classname = self.__class__.__name__
|
|
return '%s_%d_%s_cpu' % (classname, self._instance_num, base_str)
|
|
|
|
def get_gpu_blob_name(self, base_str, gpu_id):
|
|
classname = self.__class__.__name__
|
|
return '%s_%d_%s_gpu%d' % (
|
|
classname, self._instance_num, base_str, gpu_id
|
|
)
|
|
|
|
def make_unique_blob_name(self, base_str):
|
|
"""
|
|
Returns a blob name that will be unique to the current device
|
|
and optimizer instance.
|
|
"""
|
|
current_scope = scope.CurrentDeviceScope()
|
|
if current_scope is None:
|
|
return self.get_cpu_blob_name(base_str)
|
|
|
|
if current_scope.device_type == caffe2_pb2.CUDA:
|
|
return self.get_gpu_blob_name(base_str, current_scope.cuda_gpu_id)
|
|
else:
|
|
return self.get_cpu_blob_name(base_str)
|
|
|
|
def build_lr(self, net, param_init_net, base_learning_rate,
|
|
learning_rate_blob=None, policy="fixed",
|
|
iter_val=0, **kwargs):
|
|
if learning_rate_blob is None:
|
|
learning_rate_blob = self.make_unique_blob_name('lr')
|
|
if not param_init_net.BlobIsDefined(_OPTIMIZER_ITERATION_NAME):
|
|
# Add training operators.
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
iteration = param_init_net.ConstantFill(
|
|
[], _OPTIMIZER_ITERATION_NAME, shape=[1],
|
|
value=iter_val,
|
|
dtype=core.DataType.INT64)
|
|
iter_mutex = param_init_net.CreateMutex([], ["iteration_mutex"])
|
|
net.AtomicIter([iter_mutex, iteration], [iteration])
|
|
else:
|
|
iteration = param_init_net.GetBlobRef(_OPTIMIZER_ITERATION_NAME)
|
|
|
|
if not net.BlobIsDefined(learning_rate_blob):
|
|
# There is one interesting thing here: since we are minimizing, we are
|
|
# doing "descent" so the learning rate is set to be negative.
|
|
lr = net.LearningRate(
|
|
[iteration],
|
|
learning_rate_blob,
|
|
base_lr=-base_learning_rate,
|
|
policy=policy,
|
|
**kwargs
|
|
)
|
|
else:
|
|
lr = net.GetBlobRef(learning_rate_blob)
|
|
|
|
if self._norm_ratio is not None:
|
|
norm_ratio = net.CopyFromCPUInput(
|
|
self._norm_ratio, self.make_unique_blob_name('norm_ratio')
|
|
)
|
|
scaled_lr = net.Mul(
|
|
[lr, norm_ratio],
|
|
self.make_unique_blob_name('scaled_lr'),
|
|
broadcast=1,
|
|
)
|
|
|
|
return scaled_lr, iteration
|
|
return lr, iteration
|
|
|
|
def add_norm_ratio(self, norm_ratio):
|
|
self._norm_ratio = norm_ratio
|
|
|
|
@staticmethod
|
|
def dedup(net, sparse_dedup_aggregator, grad):
|
|
assert (isinstance(grad, core.GradientSlice))
|
|
if sparse_dedup_aggregator:
|
|
return net.DeduplicateGradientSlices(
|
|
grad, aggregator=sparse_dedup_aggregator)
|
|
else:
|
|
return grad
|
|
|
|
def get_auxiliary_parameters(self):
|
|
"""Returns a list of auxiliary parameters.
|
|
|
|
Returns:
|
|
aux_params: A namedtuple, AuxParams.
|
|
|
|
aux_params.local stores a list of blobs. Each blob is a local
|
|
auxiliary parameter. A local auxiliary parameter is a parameter in
|
|
parallel to a learning rate parameter. Take adagrad as an example,
|
|
the local auxiliary parameter is the squared sum parameter, because
|
|
every learning rate has a squared sum associated with it.
|
|
|
|
aux_params.shared also stores a list of blobs. Each blob is a shared
|
|
auxiliary parameter. A shared auxiliary parameter is a parameter
|
|
that is shared across all the learning rate parameters. Take adam as
|
|
an example, the iteration parameter is a shared parameter, because
|
|
all the learning rates share the same iteration parameter.
|
|
"""
|
|
return self._aux_params
|
|
|
|
# TODO(xlwang): In transfer learning, parameter initialized from pretrained
|
|
# model might require a different learning rate than otherwise initialized.
|
|
# To this end, here we implement a python solution where
|
|
# `base_learning_rate` is scaled by `scale`, by calling
|
|
# `scale_learning_rate`; Alternatively, we can achieve same effect by
|
|
# rewriting the LearningRate operator in C++
|
|
# Note that it is the responsibility of specific optimizer to decide what
|
|
# logic should be used for `scale_learning_rate`
|
|
def scale_learning_rate(self, *args, **kwargs):
|
|
raise NotImplementedError(
|
|
"Optimizer Need to Implement `scale_learning_rate` method.")
|
|
|
|
|
|
class SgdOptimizer(Optimizer):
|
|
def __init__(self, base_learning_rate=0.01, policy='fixed',
|
|
momentum=0.0, nesterov=1, sparse_dedup_aggregator=None,
|
|
**kwargs):
|
|
super(SgdOptimizer, self).__init__()
|
|
self.base_learning_rate = base_learning_rate
|
|
self.policy = policy
|
|
self.momentum = momentum
|
|
self.nesterov = nesterov
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.init_kwargs = kwargs
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
param = param_info.blob
|
|
grad = param_info.grad
|
|
if self.base_learning_rate == 0:
|
|
return
|
|
assert self.base_learning_rate > 0
|
|
|
|
# We need negative sign for LR when used directly with WeightedSum
|
|
# below.
|
|
lr_sign = -1 if self.momentum else 1
|
|
lr, _ = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=self.base_learning_rate * lr_sign,
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
dev = scope.CurrentDeviceScope()
|
|
if dev is None:
|
|
dev = core.DeviceOption(caffe2_pb2.CPU)
|
|
|
|
# Each GPU/CPU must have its own ONE blob, thus modify the name
|
|
# to include device information.
|
|
ONE = param_init_net.ConstantFill(
|
|
[],
|
|
"ONE_{}_{}".format(dev.device_type, dev.cuda_gpu_id),
|
|
shape=[1],
|
|
value=1.0
|
|
)
|
|
|
|
self._aux_params.shared.append(ONE)
|
|
|
|
if self.momentum > 0:
|
|
momentum_data = param_init_net.ConstantFill(
|
|
param, str(param) + "_momentum", value=0.)
|
|
self._aux_params.local.append(momentum_data)
|
|
|
|
if isinstance(grad, core.GradientSlice):
|
|
assert self.momentum == 0., "Doesn't support momentum for sparse"
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.ScatterWeightedSum(
|
|
[param, ONE, grad.indices, grad.values, lr],
|
|
param
|
|
)
|
|
else:
|
|
if self.momentum > 0.:
|
|
net.MomentumSGDUpdate(
|
|
[grad, momentum_data, lr, param],
|
|
[grad, momentum_data, param],
|
|
momentum=self.momentum,
|
|
nesterov=self.nesterov)
|
|
else:
|
|
coeff = lr
|
|
|
|
net.WeightedSum(
|
|
[param, ONE, grad, coeff],
|
|
param
|
|
)
|
|
|
|
def scale_learning_rate(self, scale):
|
|
self.base_learning_rate *= scale
|
|
return
|
|
|
|
|
|
class MultiPrecisionSgdOptimizer(SgdOptimizer):
|
|
def __init__(self, base_learning_rate=0.1, momentum=0.0,
|
|
policy="fixed", nesterov=1, sparse_dedup_aggregator=None,
|
|
**kwargs):
|
|
super(SgdOptimizer, self).__init__()
|
|
self.base_learning_rate = base_learning_rate
|
|
self.momentum = momentum
|
|
self.policy = policy
|
|
self.nesterov = nesterov
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.init_kwargs = kwargs
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
param = param_info.blob
|
|
param_fp32 = param_info.blob_copy[core.DataType.FLOAT] \
|
|
if param_info.blob_copy is not None else None
|
|
|
|
# If we have a straight fp32 parameter, run the base class
|
|
if param_fp32 is None:
|
|
return SgdOptimizer._run(self, net, param_init_net, param_info)
|
|
|
|
grad = param_info.grad
|
|
if self.base_learning_rate == 0:
|
|
return
|
|
assert self.base_learning_rate > 0
|
|
|
|
lr, _ = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=-self.base_learning_rate,
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
momentum_data = param_init_net.ConstantFill(
|
|
param_fp32, str(param) + "_momentum", value=0.)
|
|
self._aux_params.local.append(momentum_data)
|
|
|
|
assert not isinstance(grad, core.GradientSlice), \
|
|
"Doesn't support sparse gradients"
|
|
|
|
# Copy gradient to fp32
|
|
grad_fp32 = net.HalfToFloat(grad, grad + "_fp32")
|
|
|
|
# update (fused) in fp32
|
|
net.MomentumSGDUpdate(
|
|
[grad_fp32, momentum_data, lr, param_fp32],
|
|
[grad_fp32, momentum_data, param_fp32],
|
|
momentum=self.momentum,
|
|
nesterov=self.nesterov)
|
|
|
|
# Copy updated param back to fp16
|
|
net.FloatToHalf(param_fp32, param)
|
|
|
|
|
|
class WeightDecayBuilder(Optimizer):
|
|
def __init__(self, weight_decay):
|
|
self.weight_decay = weight_decay
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
dev = scope.CurrentDeviceScope()
|
|
if dev is None:
|
|
dev = core.DeviceOption(caffe2_pb2.CPU)
|
|
|
|
ONE = param_init_net.ConstantFill(
|
|
[],
|
|
"ONE_{}_{}".format(dev.device_type, dev.cuda_gpu_id),
|
|
shape=[1],
|
|
value=1.0
|
|
)
|
|
WD = param_init_net.ConstantFill(
|
|
[], "wd_{}_{}".format(dev.device_type, dev.cuda_gpu_id),
|
|
shape=[1], value=self.weight_decay
|
|
)
|
|
|
|
if isinstance(param_info.grad, core.GradientSlice):
|
|
assert "Weight decay does not yet support sparse gradients"
|
|
else:
|
|
net.WeightedSum(
|
|
[param_info.grad, ONE, param_info.blob, WD],
|
|
param_info.grad,
|
|
)
|
|
|
|
|
|
class AdagradOptimizer(Optimizer):
|
|
def __init__(self, alpha=0.01, epsilon=1e-4, policy="fixed",
|
|
sparse_dedup_aggregator=None, engine='', **kwargs):
|
|
super(AdagradOptimizer, self).__init__()
|
|
self.alpha = alpha
|
|
self.epsilon = epsilon
|
|
self.policy = policy
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.engine = engine
|
|
self.init_kwargs = kwargs
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
param = param_info.blob
|
|
grad = param_info.grad
|
|
|
|
if self.alpha <= 0:
|
|
return
|
|
|
|
lr, _ = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=self.alpha,
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
param_squared_sum = param_init_net.ConstantFill(
|
|
[param],
|
|
str(param) + "_squared_sum",
|
|
value=0.0
|
|
)
|
|
self._aux_params.local.append(param_squared_sum)
|
|
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.SparseAdagrad(
|
|
[param, param_squared_sum, grad.indices, grad.values, lr],
|
|
[param, param_squared_sum],
|
|
epsilon=self.epsilon,
|
|
engine=self.engine
|
|
)
|
|
else:
|
|
net.Adagrad(
|
|
[param, param_squared_sum, grad, lr],
|
|
[param, param_squared_sum],
|
|
epsilon=self.epsilon,
|
|
engine=self.engine
|
|
)
|
|
|
|
def scale_learning_rate(self, scale):
|
|
self.alpha *= scale
|
|
return
|
|
|
|
|
|
class FtrlOptimizer(Optimizer):
|
|
def __init__(self, alpha=0.01, beta=1e-4, lambda1=0, lambda2=0,
|
|
sparse_dedup_aggregator=None, engine=''):
|
|
super(FtrlOptimizer, self).__init__()
|
|
self.alpha = alpha
|
|
self.beta = beta
|
|
self.lambda1 = lambda1
|
|
self.lambda2 = lambda2
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.engine = engine
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
param = param_info.blob
|
|
grad = param_info.grad
|
|
|
|
if self.alpha <= 0:
|
|
return
|
|
|
|
nz = param_init_net.ConstantFill(
|
|
[param],
|
|
str(param) + "_ftrl_nz",
|
|
extra_shape=[2],
|
|
value=0.0
|
|
)
|
|
self._aux_params.local.append(nz)
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.SparseFtrl(
|
|
[param, nz, grad.indices, grad.values],
|
|
[param, nz],
|
|
engine=self.engine,
|
|
alpha=self.alpha,
|
|
beta=self.beta,
|
|
lambda1=self.lambda1,
|
|
lambda2=self.lambda2
|
|
)
|
|
else:
|
|
net.Ftrl(
|
|
[param, nz, grad],
|
|
[param, nz],
|
|
engine=self.engine,
|
|
alpha=self.alpha,
|
|
beta=self.beta,
|
|
lambda1=self.lambda1,
|
|
lambda2=self.lambda2
|
|
)
|
|
|
|
def scale_learning_rate(self, scale):
|
|
self.alpha *= scale
|
|
return
|
|
|
|
|
|
class AdamOptimizer(Optimizer):
|
|
def __init__(self, alpha=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8,
|
|
policy='fixed', sparse_dedup_aggregator=None,
|
|
engine='', **kwargs):
|
|
super(AdamOptimizer, self).__init__()
|
|
self.alpha = alpha
|
|
self.beta1 = beta1
|
|
self.beta2 = beta2
|
|
self.epsilon = epsilon
|
|
self.policy = policy
|
|
self.sparse_dedup_aggregator = sparse_dedup_aggregator
|
|
self.engine = engine
|
|
self.init_kwargs = kwargs
|
|
|
|
def _run(self, net, param_init_net, param_info):
|
|
param = param_info.blob
|
|
grad = param_info.grad
|
|
|
|
if self.alpha <= 0:
|
|
return
|
|
|
|
lr, iteration = self.build_lr(
|
|
net, param_init_net,
|
|
base_learning_rate=self.alpha,
|
|
policy=self.policy,
|
|
**(self.init_kwargs)
|
|
)
|
|
|
|
m1 = param_init_net.ConstantFill(
|
|
[param],
|
|
param + "_first_moment",
|
|
value=0.0
|
|
)
|
|
m2 = param_init_net.ConstantFill(
|
|
[param],
|
|
param + "_second_moment",
|
|
value=0.0
|
|
)
|
|
self._aux_params.shared.append(iteration)
|
|
self._aux_params.local.append(m1)
|
|
self._aux_params.local.append(m2)
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = self.dedup(net, self.sparse_dedup_aggregator, grad)
|
|
net.SparseAdam(
|
|
[param, m1, m2, grad.indices, grad.values, lr, iteration],
|
|
[param, m1, m2],
|
|
beta1=self.beta1,
|
|
beta2=self.beta2,
|
|
epsilon=self.epsilon
|
|
)
|
|
|
|
else:
|
|
net.Adam(
|
|
[param, m1, m2, grad, lr, iteration],
|
|
[param, m1, m2],
|
|
beta1=self.beta1,
|
|
beta2=self.beta2,
|
|
epsilon=self.epsilon)
|
|
|
|
def scale_learning_rate(self, scale):
|
|
self.alpha *= scale
|
|
return
|
|
|
|
|
|
def _get_param_to_device(model):
|
|
# Infer blob devices by going through the net and param_init_net
|
|
# ops and observing the device used to create or use the blob.
|
|
param_to_device = core.InferBlobDevices(model.net)
|
|
param_to_device.update(core.InferBlobDevices(model.param_init_net))
|
|
return param_to_device
|
|
|
|
|
|
def get_param_device(param_name, grad, param_to_device=None, default_device=None):
|
|
device = default_device
|
|
param_to_device = param_to_device or {}
|
|
# We first check if parameter's device has been inferred. If not,
|
|
# we check the gradient. This can happen if parameter is not output
|
|
# by any blob but created by a FetchBlob.
|
|
if param_name in param_to_device:
|
|
device = param_to_device[param_name]
|
|
else:
|
|
if isinstance(grad, core.GradientSlice):
|
|
grad = grad
|
|
if str(grad.values) in param_to_device:
|
|
device = param_to_device[str(grad.values)]
|
|
elif str(grad.indices) in param_to_device:
|
|
device = param_to_device[str(grad.indices)]
|
|
else:
|
|
grad_name = str(grad)
|
|
if grad_name in param_to_device:
|
|
device = param_to_device[grad_name]
|
|
|
|
assert device is not None,\
|
|
"Cannot infer device for {}: no op creates it".format(param_name)
|
|
return device
|
|
|
|
|
|
def _calc_norm_ratio(model, params, name_scope, param_to_device, max_gradient_norm):
|
|
with core.NameScope(name_scope):
|
|
grad_squared_sums = []
|
|
for i, param in enumerate(params):
|
|
device = get_param_device(str(param.blob), param.grad, param_to_device)
|
|
|
|
with core.DeviceScope(device):
|
|
grad = (
|
|
param.grad
|
|
if not isinstance(
|
|
param.grad,
|
|
core.GradientSlice,
|
|
) else param.grad.values
|
|
)
|
|
|
|
grad_squared_sum_name = 'grad_{}_squared_sum'.format(i)
|
|
grad_squared_sum = model.net.SumSqrElements(
|
|
grad,
|
|
grad_squared_sum_name,
|
|
)
|
|
grad_squared_sum_cpu = model.net.EnsureCPUOutput(
|
|
grad_squared_sum
|
|
)
|
|
grad_squared_sums.append(grad_squared_sum_cpu)
|
|
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
grad_squared_full_sum = model.net.Sum(
|
|
grad_squared_sums,
|
|
'grad_squared_full_sum',
|
|
)
|
|
global_norm = model.net.Pow(
|
|
grad_squared_full_sum,
|
|
'global_norm',
|
|
exponent=0.5,
|
|
)
|
|
clip_norm = model.param_init_net.ConstantFill(
|
|
[],
|
|
'clip_norm',
|
|
shape=[],
|
|
value=float(max_gradient_norm),
|
|
)
|
|
max_norm = model.net.Max(
|
|
[global_norm, clip_norm],
|
|
'max_norm',
|
|
)
|
|
norm_ratio = model.net.Div(
|
|
[clip_norm, max_norm],
|
|
'norm_ratio',
|
|
)
|
|
return norm_ratio
|
|
|
|
|
|
def _build(
|
|
model,
|
|
optimizer,
|
|
weights_only=False,
|
|
use_param_info_optim=True,
|
|
max_gradient_norm=None,
|
|
):
|
|
param_to_device = _get_param_to_device(model)
|
|
|
|
# Validate there are no duplicate params
|
|
model.Validate()
|
|
|
|
params = []
|
|
for param_info in model.GetOptimizationParamInfo():
|
|
if weights_only and param_info.blob not in model.weights:
|
|
continue
|
|
params.append(param_info)
|
|
|
|
if max_gradient_norm is not None:
|
|
norm_ratio = _calc_norm_ratio(
|
|
model, params,
|
|
'norm_clipped_grad_update',
|
|
param_to_device,
|
|
max_gradient_norm,
|
|
)
|
|
optimizer.add_norm_ratio(norm_ratio)
|
|
|
|
for param_info in params:
|
|
param_name = str(param_info.blob)
|
|
|
|
device = get_param_device(param_name, param_info.grad, param_to_device)
|
|
|
|
with core.DeviceScope(device):
|
|
if param_info.optimizer and use_param_info_optim:
|
|
param_info.optimizer(model.net, model.param_init_net, param_info)
|
|
else:
|
|
optimizer(model.net, model.param_init_net, param_info)
|
|
return optimizer
|
|
|
|
|
|
def add_weight_decay(model, weight_decay):
|
|
"""Adds a decay to weights in the model.
|
|
|
|
This is a form of L2 regularization.
|
|
|
|
Args:
|
|
weight_decay: strength of the regularization
|
|
"""
|
|
_build(
|
|
model,
|
|
WeightDecayBuilder(weight_decay=weight_decay),
|
|
weights_only=True,
|
|
use_param_info_optim=False,
|
|
)
|
|
|
|
|
|
def build_sgd(model, base_learning_rate, max_gradient_norm=None, **kwargs):
|
|
sgd_optimizer = SgdOptimizer(base_learning_rate, **kwargs)
|
|
return _build(model, sgd_optimizer, max_gradient_norm=max_gradient_norm)
|
|
|
|
|
|
def build_multi_precision_sgd(
|
|
model, base_learning_rate, max_gradient_norm=None, **kwargs
|
|
):
|
|
multi_prec_sgd_optimizer = MultiPrecisionSgdOptimizer(
|
|
base_learning_rate, **kwargs
|
|
)
|
|
return _build(
|
|
model, multi_prec_sgd_optimizer, max_gradient_norm=max_gradient_norm
|
|
)
|
|
|
|
|
|
def build_ftrl(model, engine="SIMD", **kwargs):
|
|
if engine == "SIMD":
|
|
assert core.IsOperator('Ftrl_ENGINE_SIMD')
|
|
assert core.IsOperator('SparseFtrl_ENGINE_SIMD')
|
|
ftrl_optimizer = FtrlOptimizer(engine=engine, **kwargs)
|
|
return _build(model, ftrl_optimizer)
|
|
|
|
|
|
def build_adagrad(
|
|
model,
|
|
base_learning_rate,
|
|
parameters=None,
|
|
max_gradient_norm=None,
|
|
**kwargs
|
|
):
|
|
adagrad_optimizer = AdagradOptimizer(alpha=base_learning_rate, **kwargs)
|
|
return _build(model, adagrad_optimizer, max_gradient_norm=max_gradient_norm)
|
|
|
|
|
|
def build_adam(model, base_learning_rate, max_gradient_norm=None, **kwargs):
|
|
adam_optimizer = AdamOptimizer(alpha=base_learning_rate, **kwargs)
|
|
return _build(model, adam_optimizer, max_gradient_norm=max_gradient_norm)
|