mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: This patch allows to freeze model that utilizes interfaces. Freezing works under the user assumption that the interfase module dones not aliases with any value used in the model. To enable freezing of such modules, added an extra pramater: torch._C._freeze_module(module, ignoreInterfaces = True) Pull Request resolved: https://github.com/pytorch/pytorch/pull/41860 Reviewed By: eellison Differential Revision: D22670566 Pulled By: bzinodev fbshipit-source-id: 41197a724bc2dca2e8495a0924c224dc569f62a4
623 lines
21 KiB
Python
623 lines
21 KiB
Python
# flake8: noqa
|
|
# TODO: enable linting check for this file
|
|
|
|
from typing import List
|
|
import torch
|
|
import torch.nn as nn
|
|
import os
|
|
import sys
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.jit_utils import JitTestCase, execWrapper
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
class OrigModule(nn.Module):
|
|
def __init__(self):
|
|
super(OrigModule, self).__init__()
|
|
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return inp1 + inp2 + 1
|
|
|
|
def two(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return input + 2
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return input + self.one(input, input) + 1
|
|
|
|
class NewModule(nn.Module):
|
|
def __init__(self):
|
|
super(NewModule, self).__init__()
|
|
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return inp1 * inp2 + 1
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.one(input, input + 1)
|
|
|
|
class TestModuleInterface(JitTestCase):
|
|
def test_not_submodule_interface_call(self):
|
|
@torch.jit.interface
|
|
class ModuleInterface(nn.Module):
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
class TestNotModuleInterfaceCall(nn.Module):
|
|
proxy_mod : ModuleInterface
|
|
|
|
def __init__(self):
|
|
super(TestNotModuleInterfaceCall, self).__init__()
|
|
self.proxy_mod = OrigModule()
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.proxy_mod.two(input)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Tried to access nonexistent attribute"):
|
|
torch.jit.script(TestNotModuleInterfaceCall())
|
|
|
|
def test_module_interface(self):
|
|
global OneTwoModule, OneTwoClass
|
|
@torch.jit.interface
|
|
class OneTwoModule(nn.Module):
|
|
def one(self, x, y):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def two(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
@torch.jit.interface
|
|
class OneTwoClass(object):
|
|
def one(self, x, y):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def two(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class FooMod(nn.Module):
|
|
def one(self, x, y):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return x + y
|
|
|
|
def two(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return 2 * x
|
|
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return self.one(self.two(x), x)
|
|
|
|
class BarMod(nn.Module):
|
|
def one(self, x, y):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return x * y
|
|
|
|
def two(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return 2 / x
|
|
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return self.two(self.one(x, x))
|
|
|
|
@torch.jit.export
|
|
def forward2(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return self.two(self.one(x, x)) + 1
|
|
|
|
def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor):
|
|
return mod_list[0].forward(x) + mod_list[1].forward(x)
|
|
|
|
def use_class_interface(mod_list, x):
|
|
# type: (List[OneTwoClass], Tensor) -> Tensor
|
|
return mod_list[0].two(x) + mod_list[1].one(x, x)
|
|
|
|
scripted_foo_mod = torch.jit.script(FooMod())
|
|
scripted_bar_mod = torch.jit.script(BarMod())
|
|
self.checkScript(use_module_interface,
|
|
([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
|
|
self.checkScript(use_class_interface,
|
|
([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
|
|
|
|
def call_module_interface_on_other_method(mod_interface, x):
|
|
# type: (OneTwoModule, Tensor) -> Tensor
|
|
return mod_interface.forward2(x)
|
|
|
|
# ensure error out when we call the module on the method other than the interface specified.
|
|
with self.assertRaisesRegex(RuntimeError, "Tried to access nonexistent attribute or method"):
|
|
self.checkScript(call_module_interface_on_other_method, (scripted_bar_mod, torch.rand(3, 4),))
|
|
|
|
|
|
def test_module_interface_subtype(self):
|
|
global OneTwoModule
|
|
@torch.jit.interface
|
|
class OneTwoModule(nn.Module):
|
|
def one(self, x, y):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def two(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
@torch.jit.script
|
|
def as_module_interface(x):
|
|
# type: (OneTwoModule) -> OneTwoModule
|
|
return x
|
|
|
|
@torch.jit.script
|
|
class Foo(object):
|
|
def one(self, x, y):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return x + y
|
|
|
|
def two(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return 2 * x
|
|
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return self.one(self.two(x), x)
|
|
|
|
# check class object is not a subtype of module interface
|
|
with self.assertRaisesRegex(RuntimeError, "ScriptModule class can be subtype of module interface"):
|
|
as_module_interface(Foo())
|
|
|
|
class WrongMod(nn.Module):
|
|
def two(self, x):
|
|
# type: (int) -> int
|
|
return 2 * x
|
|
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return x + torch.randn(3, self.two(3))
|
|
|
|
scripted_wrong_mod = torch.jit.script(WrongMod())
|
|
|
|
# wrong module that is not compatible with module interface
|
|
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
|
|
as_module_interface(scripted_wrong_mod)
|
|
|
|
def test_module_interface_inheritance(self):
|
|
with self.assertRaisesRegex(RuntimeError, "does not support inheritance yet. Please directly"):
|
|
@torch.jit.interface
|
|
class InheritMod(nn.ReLU):
|
|
def three(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
return 3 * x
|
|
|
|
def test_module_swap(self):
|
|
@torch.jit.interface
|
|
class ModuleInterface(nn.Module):
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class TestModule(nn.Module):
|
|
proxy_mod : ModuleInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigModule()
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.proxy_mod.forward(input)
|
|
|
|
scripted_mod = torch.jit.script(TestModule())
|
|
input = torch.randn(3, 4)
|
|
self.assertEqual(scripted_mod(input), 3 * input + 2)
|
|
|
|
# module swap with module that have the same interface
|
|
scripted_mod.proxy_mod = torch.jit.script(NewModule())
|
|
self.assertEqual(scripted_mod(input), input * (input + 1) + 1)
|
|
|
|
# module swap with non-scripted module should throw error
|
|
with self.assertRaisesRegex(RuntimeError, "a ScriptModule with non-scripted module"):
|
|
scripted_mod.proxy_mod = NewModule()
|
|
|
|
def test_module_swap_wrong_module(self):
|
|
@torch.jit.interface
|
|
class ModuleInterface(nn.Module):
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class NewModuleWrong(nn.Module):
|
|
def __init__(self):
|
|
super(NewModuleWrong, self).__init__()
|
|
|
|
def forward(self, input):
|
|
# type: (int) -> int
|
|
return input + 1
|
|
|
|
class TestModule(nn.Module):
|
|
proxy_mod : ModuleInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigModule()
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.proxy_mod.forward(input)
|
|
|
|
scripted_mod = torch.jit.script(TestModule())
|
|
# module swap with in-compatible interface
|
|
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
|
|
scripted_mod.proxy_mod = torch.jit.script(NewModuleWrong())
|
|
|
|
def test_module_swap_no_lazy_compile(self):
|
|
@torch.jit.interface
|
|
class ModuleInterface(nn.Module):
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class TestModule(nn.Module):
|
|
proxy_mod : ModuleInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigModule()
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.proxy_mod.forward(input)
|
|
|
|
class NewModuleMethodNotLazyCompile(nn.Module):
|
|
def __init__(self):
|
|
super(NewModuleMethodNotLazyCompile, self).__init__()
|
|
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return inp1 * inp2 + 1
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return input + 1
|
|
|
|
scripted_mod = torch.jit.script(TestModule())
|
|
# module swap with module that have the same interface, but the method not get
|
|
# lazily compiled from forward, user need to export it explicitly for swap to work
|
|
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
|
|
scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodNotLazyCompile())
|
|
|
|
class NewModuleMethodManualExport(nn.Module):
|
|
def __init__(self):
|
|
super(NewModuleMethodManualExport, self).__init__()
|
|
|
|
@torch.jit.export
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return inp1 * inp2 + 1
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return input + 1
|
|
|
|
scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodManualExport())
|
|
input = torch.randn(3, 4)
|
|
self.assertEqual(scripted_mod(input), input + 1)
|
|
|
|
def test_module_swap_no_module_interface(self):
|
|
# test module swapping with no module interface
|
|
class TestNoModuleInterface(nn.Module):
|
|
def __init__(self):
|
|
super(TestNoModuleInterface, self).__init__()
|
|
self.proxy_mod = OrigModule()
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.proxy_mod(input)
|
|
|
|
scripted_no_module_interface = torch.jit.script(TestNoModuleInterface())
|
|
# proxy mod is swapped with the new ScriptModule that share the same JIT type, should succeed.
|
|
scripted_no_module_interface.proxy_mod = torch.jit.script(OrigModule())
|
|
# proxy_mod is neither a module interface or have the same JIT type, should fail
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"Expected a value of type '__torch__.jit.test_module_interface.OrigModule' " +
|
|
"for field 'proxy_mod', but found '__torch__.jit.test_module_interface.NewModule'"):
|
|
scripted_no_module_interface.proxy_mod = torch.jit.script(NewModule())
|
|
|
|
def test_script_module_as_interface_swap(self):
|
|
@torch.jit.interface
|
|
class ModuleInterface(nn.Module):
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class OrigScriptModule(torch.jit.ScriptModule):
|
|
def __init__(self):
|
|
super(OrigScriptModule, self).__init__()
|
|
|
|
@torch.jit.script_method
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return inp1 + inp2 + 1
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return input + self.one(input, input) + 1
|
|
|
|
class NewScriptModule(torch.jit.ScriptModule):
|
|
def __init__(self):
|
|
super(NewScriptModule, self).__init__()
|
|
|
|
@torch.jit.script_method
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
return inp1 * inp2 + 1
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.one(input, input + 1)
|
|
|
|
class TestNNModuleWithScriptModule(nn.Module):
|
|
proxy_mod : ModuleInterface
|
|
|
|
def __init__(self):
|
|
super(TestNNModuleWithScriptModule, self).__init__()
|
|
self.proxy_mod = OrigScriptModule()
|
|
|
|
def forward(self, input):
|
|
# type: (Tensor) -> Tensor
|
|
return self.proxy_mod.forward(input)
|
|
|
|
input = torch.randn(3, 4)
|
|
scripted_mod = torch.jit.script(TestNNModuleWithScriptModule())
|
|
self.assertEqual(scripted_mod(input), 3 * input + 2)
|
|
|
|
scripted_mod.proxy_mod = NewScriptModule()
|
|
self.assertEqual(scripted_mod(input), input * (input + 1) + 1)
|
|
|
|
# The call to forward of proxy_mod cannot be inlined. Making sure
|
|
# Freezing is throwing an error for now.
|
|
def test_freeze_module_with_interface(self):
|
|
class SubModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SubModule, self).__init__()
|
|
self.b = 20
|
|
|
|
def forward(self, x):
|
|
return self.b
|
|
|
|
class OrigMod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(OrigMod, self).__init__()
|
|
self.a = 0
|
|
|
|
def forward(self, x):
|
|
return self.a
|
|
|
|
@torch.jit.interface
|
|
class ModInterface(torch.nn.Module):
|
|
def forward(self, x):
|
|
# type: (Tensor) -> int
|
|
pass
|
|
|
|
class TestModule(torch.nn.Module):
|
|
proxy_mod : ModInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigMod()
|
|
self.sub = SubModule() # folded
|
|
|
|
def forward(self, x):
|
|
return self.proxy_mod(x) + self.sub(x)
|
|
|
|
m = torch.jit.script(TestModule())
|
|
m.eval()
|
|
mf = torch._C._freeze_module(m._c)
|
|
# Assume interface has no aliasing
|
|
mf = torch._C._freeze_module(m._c, freezeInterfaces = True)
|
|
input = torch.tensor([1])
|
|
out_s = m.forward(input)
|
|
out_f = mf.forward(input)
|
|
self.assertEqual(out_s, out_f)
|
|
|
|
def test_freeze_module_with_setattr_in_interface(self):
|
|
class SubModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SubModule, self).__init__()
|
|
self.b = 20
|
|
|
|
def forward(self, x):
|
|
self.b += 2;
|
|
return self.b
|
|
@torch.jit.export
|
|
def getb(self, x):
|
|
return self.b
|
|
|
|
class OrigMod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(OrigMod, self).__init__()
|
|
self.a = 0
|
|
|
|
def forward(self, x):
|
|
return self.a
|
|
|
|
@torch.jit.interface
|
|
class ModInterface(torch.nn.Module):
|
|
def forward(self, x):
|
|
# type: (Tensor) -> int
|
|
pass
|
|
|
|
class TestModule(torch.nn.Module):
|
|
proxy_mod : ModInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigMod()
|
|
self.sub = SubModule()
|
|
|
|
def forward(self, x):
|
|
return self.proxy_mod(x) + self.sub.getb(x)
|
|
|
|
m = torch.jit.script(TestModule())
|
|
m.proxy_mod = m.sub
|
|
m.eval()
|
|
with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
|
|
mf = torch._C._freeze_module(m._c, freezeInterfaces = True)
|
|
|
|
def test_freeze_module_with_inplace_mutation_in_interface(self):
|
|
class SubModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SubModule, self).__init__()
|
|
self.b = torch.tensor([1.5])
|
|
|
|
def forward(self, x):
|
|
self.b[0] += 2;
|
|
return self.b
|
|
@torch.jit.export
|
|
def getb(self, x):
|
|
return self.b
|
|
|
|
class OrigMod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(OrigMod, self).__init__()
|
|
self.a = torch.tensor([0.5])
|
|
|
|
def forward(self, x):
|
|
return self.a
|
|
|
|
@torch.jit.interface
|
|
class ModInterface(torch.nn.Module):
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class TestModule(torch.nn.Module):
|
|
proxy_mod : ModInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigMod()
|
|
self.sub = SubModule()
|
|
|
|
def forward(self, x):
|
|
y = self.proxy_mod(x);
|
|
z= self.sub.getb(x)
|
|
return y[0] + z[0]
|
|
|
|
m = torch.jit.script(TestModule())
|
|
m.proxy_mod = m.sub
|
|
m.sub.b = m.proxy_mod.b
|
|
m.eval()
|
|
with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
|
|
mf = torch._C._freeze_module(m._c, freezeInterfaces = True)
|
|
|
|
def test_freeze_module_with_mutated_interface(self):
|
|
class SubModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(SubModule, self).__init__()
|
|
self.b = torch.tensor([1.5])
|
|
|
|
def forward(self, x):
|
|
return self.b
|
|
@torch.jit.export
|
|
def getb(self, x):
|
|
return self.b
|
|
|
|
class OrigMod(torch.nn.Module):
|
|
def __init__(self):
|
|
super(OrigMod, self).__init__()
|
|
self.a = torch.tensor([0.5])
|
|
|
|
def forward(self, x):
|
|
return self.a
|
|
|
|
@torch.jit.interface
|
|
class ModInterface(torch.nn.Module):
|
|
def forward(self, x):
|
|
# type: (Tensor) -> Tensor
|
|
pass
|
|
|
|
class TestModule(torch.nn.Module):
|
|
proxy_mod : ModInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigMod()
|
|
self.sub = SubModule()
|
|
|
|
def forward(self, x):
|
|
self.proxy_mod = self.sub
|
|
y = self.proxy_mod(x);
|
|
z= self.sub.getb(x)
|
|
return y[0] + z[0]
|
|
|
|
m = torch.jit.script(TestModule())
|
|
m.eval()
|
|
with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
|
|
mf = torch._C._freeze_module(m._c, freezeInterfaces = True)
|
|
|
|
def test_module_apis_interface(self):
|
|
@torch.jit.interface
|
|
class ModuleInterface(nn.Module):
|
|
def one(self, inp1, inp2):
|
|
# type: (Tensor, Tensor) -> Tensor
|
|
pass
|
|
|
|
class TestModule(nn.Module):
|
|
proxy_mod : ModuleInterface
|
|
|
|
def __init__(self):
|
|
super(TestModule, self).__init__()
|
|
self.proxy_mod = OrigModule()
|
|
|
|
def forward(self, input):
|
|
return input * 2
|
|
|
|
@torch.jit.export
|
|
def method(self, input):
|
|
for module in self.modules():
|
|
input = module(input)
|
|
return input
|
|
|
|
with self.assertRaisesRegex(Exception, "Could not compile"):
|
|
scripted_mod = torch.jit.script(TestModule())
|