mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105424 Approved by: https://github.com/ezyang, https://github.com/malfet
104 lines
4.1 KiB
Python
104 lines
4.1 KiB
Python
"""Example use of Timer and op fuzzers to measure kernel performance.
|
|
|
|
$ python -m examples.op_benchmark
|
|
"""
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from torch.utils.benchmark import Timer
|
|
from torch.utils.benchmark.op_fuzzers.binary import BinaryOpFuzzer
|
|
from torch.utils.benchmark.op_fuzzers.unary import UnaryOpFuzzer
|
|
|
|
|
|
_MEASURE_TIME = 1.0
|
|
|
|
|
|
def assert_dicts_equal(dict_0, dict_1):
|
|
"""Builtin dict comparison will not compare numpy arrays.
|
|
e.g.
|
|
x = {"a": np.ones((2, 1))}
|
|
x == x # Raises ValueError
|
|
"""
|
|
assert set(dict_0.keys()) == set(dict_0.keys())
|
|
assert all(np.all(v == dict_1[k]) for k, v in dict_0.items() if k != "dtype")
|
|
|
|
|
|
def run(n, stmt, fuzzer_cls):
|
|
float_iter = fuzzer_cls(seed=0, dtype=torch.float32).take(n)
|
|
int_iter = fuzzer_cls(seed=0, dtype=torch.int32).take(n)
|
|
raw_results = []
|
|
for i, (float_values, int_values) in enumerate(zip(float_iter, int_iter)):
|
|
float_tensors, float_tensor_params, float_params = float_values
|
|
int_tensors, int_tensor_params, int_params = int_values
|
|
|
|
# This benchmark assumes that the two fuzzers generate identically
|
|
# sized and strided Tensors, since the same seed is used.
|
|
assert_dicts_equal(float_params, int_params)
|
|
assert_dicts_equal(float_tensor_params["x"], int_tensor_params["x"])
|
|
|
|
float_measurement, int_measurement = (
|
|
Timer(
|
|
stmt,
|
|
globals=tensors,
|
|
).blocked_autorange(min_run_time=_MEASURE_TIME)
|
|
for tensors in (float_tensors, int_tensors)
|
|
)
|
|
|
|
descriptions = []
|
|
for name in float_tensors:
|
|
shape_str = "(" + ", ".join([
|
|
f"2 ** {int(np.log2(i))}"
|
|
if 2 ** int(np.log2(i)) == i and i > 1
|
|
else str(i)
|
|
for i in float_tensors[name].shape
|
|
]) + ")"
|
|
order = float_tensor_params[name]["order"]
|
|
order_str = ("" if all(order == np.arange(len(order))) else str(tuple(order)))
|
|
steps = float_tensor_params[name]["steps"]
|
|
steps_str = str(steps) if sum(steps) > len(steps) else ""
|
|
descriptions.append((name, shape_str, order_str, steps_str))
|
|
raw_results.append((float_measurement, int_measurement, descriptions))
|
|
|
|
print(f"\r{i + 1} / {n}", end="")
|
|
print()
|
|
|
|
parsed_results, name_len, shape_len, order_len, steps_len = [], 0, 0, 0, 0
|
|
for float_measurement, int_measurement, descriptions in raw_results:
|
|
t_float = float_measurement.median * 1e6
|
|
t_int = int_measurement.median * 1e6
|
|
rel_diff = abs(t_float - t_int) / (t_float + t_int) * 2
|
|
parsed_results.append((t_float, t_int, rel_diff, descriptions))
|
|
for name, shape, order, steps in descriptions:
|
|
name_len = max(name_len, len(name))
|
|
shape_len = max(shape_len, len(shape))
|
|
order_len = max(order_len, len(order))
|
|
steps_len = max(steps_len, len(steps))
|
|
|
|
parsed_results.sort(key=lambda x: x[2])
|
|
|
|
print(f"stmt: {stmt}")
|
|
print(f" diff faster{'':>17}{' ' * name_len} ", end="")
|
|
print(f"{'shape'.ljust(shape_len)}{'':>16}{'order'.ljust(order_len)}", end="")
|
|
print(f" steps\n{'-' * 100}")
|
|
for results, spacer in [(parsed_results[:10], "..."), (parsed_results[-10:], "")]:
|
|
for t_float, t_int, rel_diff, descriptions in results:
|
|
time_str = [f"{rel_diff * 100:>4.1f}% {'int' if t_int < t_float else 'float':<20}"]
|
|
time_str.extend(["".ljust(len(time_str[0])) for _ in descriptions[:-1]])
|
|
for t_str, (name, shape, order, steps) in zip(time_str, descriptions):
|
|
name = f"{name}:".ljust(name_len + 1)
|
|
shape = shape.ljust(shape_len + 10)
|
|
order = order.ljust(order_len)
|
|
print(f"{t_str} {name} {shape}| {order} | {steps}")
|
|
print(spacer)
|
|
|
|
|
|
def main():
|
|
run(n=100, stmt="torch.median(x, dim=0)", fuzzer_cls=UnaryOpFuzzer)
|
|
run(n=100, stmt="torch.square(x)", fuzzer_cls=UnaryOpFuzzer)
|
|
run(n=100, stmt="x + y", fuzzer_cls=BinaryOpFuzzer)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|