pytorch/torch/csrc/utils/python_arg_parser.cpp
Edward Yang aacc722aec Dispatch to Python via __torch_dispatch__ (#59760)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59760

See https://github.com/pytorch/pytorch/issues/59049

There are some moving parts to this PR, I'll structure this explanation so the straightforward parts go first, and then the less straightforward parts.

**The actual dispatch to Python.** The core logic of dispatch to Python lives in `concrete_dispatch_fn` in `torch/csrc/autograd/python_variable.cpp`. It takes the input IValue stack, scans all the arguments for Tensor arguments, and defers most of the heavy lifting to `handle_torch_function_no_python_arg_parser` which actually does all of the logic for calling out to torch dispatch (in particular, this function handles multiple dispatch situations for you). Because we have a different function name than regular `__torch_function__` handling, `handle_torch_function_no_python_arg_parser` is generalized to accept a magic method name to look for when testing if Tensors have custom handling or not. Unlike `__torch_function__`, by default there is no `__torch_dispatch__` on Tensor classes.

**Maintaining the Python dispatch key.** In order to get to the dispatch to Python logic, we must tag Tensors with the `__torch_dispatch__` magic method with the newly added Python dispatch key (separated from PythonFuncTorch to allow for a transitional period while they migrate to this mechanism). We expose a new private property `_is_python_dispatch` that assists in debugging if a Tensor is participating in Python dispatch or not. We apply the Python dispatch key the first time a PyObject for a Tensor is constructed (THPVariable_NewWithVar), testing if `__torch_dispatch__` exists with  then newly added `check_has_torch_dispatch`.

**Shallow copy and detach.** For the simple examples tested in this PR, most creations of Tensor route through the dispatcher. The exception to this is `shallow_copy_and_detach`, which bypasses the dispatcher and is used when saving tensors for backwards. When a Tensor is Python dispatch, we override the behavior of `shallow_copy_and_detach` to instead directly call into `__torch_dispatch__` to perform a `detach` operation (in the same way it would be invoked if you called `detach` directly). Because this Python call is triggered directly from c10::TensorImpl, it must be indirected through `PyInterpreter::detach`, which is the general mechanism for dynamic dispatching to the Python interpreter associated with a TensorImpl.

**torchdeploy compatibility.** The dispatch to Python logic cannot be directly registered to the dispatcher as it is compiled in the Python library, which will get loaded multiple times per torchdeploy interpreter. Thus, we must employ a two phase process. First, we register a fallback inside a non-Python library (aten/src/ATen/core/PythonFallbackKernel.cpp). Its job is to determine the appropriate PyInterpreter to handle the Python dispatch by going through all of the arguments and finding the first argument that has a PyObject/PyInterpreter. With this PyInterpreter, it makes another dynamic dispatch via "dispatch" which will go to the correct torchdeploy interpreter to handle dispatching to actual Python.

**Testing.** We provide a simple example of a LoggingTensor for testing, which can be used to generate TorchScript-like traces to observe what operations are being called when a Tensor is invoked. Although a LoggingTensor would be better implemented via an is-a relationship rather than a has-a relationship (as is done in the test), we've done it this way to show that arbitrarily complex compositions of tensors inside a tensor work properly.

**Known limitations.**

* We haven't adjusted any operator code, so some patterns may not work (as they lose the Python subclass in an unrecoverable way)
* `__torch_function__` must be explicitly disabled with `_disabled_torch_function_impl` otherwise things don't work quite correctly (in particular, what is being disabled is default subclass preservation behavior.)
* We don't ever populate kwargs, even when an argument is kwarg-only

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision:
D29017912
D29017912

Test Plan: Imported from OSS

Reviewed By: bdhirsh

Pulled By: ezyang

fbshipit-source-id: a67714d9e541d09203a8cfc85345b8967db86238
2021-06-25 11:50:32 -07:00

1148 lines
40 KiB
C++

#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/utils/invalid_arguments.h>
#include <torch/csrc/utils/python_strings.h>
#include <ATen/ATen.h>
#include <ATen/TracerMode.h>
#include <c10/util/irange.h>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static std::unordered_map<std::string, ParameterType> type_map = {
{"Tensor", ParameterType::TENSOR},
{"Scalar", ParameterType::SCALAR},
{"int64_t", ParameterType::INT64},
{"double", ParameterType::DOUBLE},
{"complex", ParameterType::COMPLEX},
{"TensorList", ParameterType::TENSOR_LIST},
{"c10::List<c10::optional<Tensor>>", ParameterType::TENSOR_LIST},
{"IntArrayRef", ParameterType::INT_LIST},
{"ArrayRef<double>", ParameterType::FLOAT_LIST},
{"Generator", ParameterType::GENERATOR},
{"bool", ParameterType::BOOL},
{"Storage", ParameterType::STORAGE},
{"PyObject*", ParameterType::PYOBJECT},
{"ScalarType", ParameterType::SCALARTYPE},
{"Layout", ParameterType::LAYOUT},
{"MemoryFormat", ParameterType::MEMORY_FORMAT},
{"QScheme", ParameterType::QSCHEME},
{"Device", ParameterType::DEVICE},
{"Stream", ParameterType::STREAM},
{"std::string", ParameterType::STRING},
{"c10::string_view", ParameterType::STRING},
{"Dimname", ParameterType::DIMNAME},
{"DimnameList", ParameterType::DIMNAME_LIST},
{"ScalarList", ParameterType::SCALAR_LIST},
};
// Default arg name translations for compatibility with NumPy.
//
// Example:
// ```python
// t = torch.randn(10,10)
// torch.sum(a=t, axis=0, keepdim=True)
// ```
//
// A vector is necessary, because we might need to try multiple values.
// In particular, NumPy sometimes uses "x" and sometimes "a" for the main input tensor.
// Rather than annotate each function separately with whether it should take "x" or "a",
// just try both.
//
// TODO: Allow individual functions to specify non-default translations:
// For example, `torch.pow` should translate "exponent" to "x2".
static const std::unordered_map<std::string, std::vector<std::string>> numpy_compatibility_arg_names = {
{"dim", {"axis"}},
{"keepdim", {"keepdims"}},
{"input", {"x", "a", "x1"}},
{"other", {"x2"}},
};
// TODO: remove this. This is a temporary list of functions that allow Python
// numbers to bind to Tensors. Some binary ops have separate Tensor and Scalar
// overloads and binding to the Tensor overload with a number of a different
// type will trigger a type error.
//
// If you modify this, you will need to adjust the blocklist in
// tools/pyi/gen_pyi.py (and add hardcoded signatures for these
// functions.)
static bool should_allow_numbers_as_tensors(const std::string& name) {
static std::unordered_set<std::string> allowed = {
"add", "add_", "add_out",
"div", "div_", "div_out",
"mul", "mul_", "mul_out",
"sub", "sub_", "sub_out",
"true_divide", "true_divide_", "true_divide_out",
"floor_divide", "floor_divide_", "floor_divide_out"
};
return allowed.find(name) != allowed.end();
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
: optional(false)
, allow_none(false)
, keyword_only(keyword_only)
, size(0)
, default_scalar(0)
{
auto space = fmt.find(' ');
if (space == std::string::npos) {
throw std::runtime_error("FunctionParameter(): missing type: " + fmt);
}
auto type_str = fmt.substr(0, space);
auto question = type_str.find('?');
if (question != std::string::npos) {
allow_none = true;
type_str = type_str.substr(0, question);
}
// Parse and remove brackets from type_str
auto bracket = type_str.find('[');
if (bracket != std::string::npos) {
auto size_str = type_str.substr(bracket + 1, type_str.length() - bracket - 2);
size = atoi(size_str.c_str());
type_str = type_str.substr(0, bracket);
}
auto name_str = fmt.substr(space + 1);
auto it = type_map.find(type_str);
if (it == type_map.end()) {
throw std::runtime_error("FunctionParameter(): invalid type string: " + type_str);
}
type_ = it->second;
auto eq = name_str.find('=');
if (eq != std::string::npos) {
name = name_str.substr(0, eq);
optional = true;
set_default_str(name_str.substr(eq + 1));
} else {
name = name_str;
}
python_name = THPUtils_internString(name);
auto np_compat_it = numpy_compatibility_arg_names.find(name);
if (np_compat_it != numpy_compatibility_arg_names.end()) {
for (const auto& str: np_compat_it->second) {
numpy_python_names.push_back(THPUtils_internString(str));
}
}
}
auto handle_torch_function_getter(THPVariable* self, const std::string& property_name) -> PyObject* {
py::object torch_api = PyObject_FastGetAttrString(THPVariableClass, (char*)property_name.c_str());
std::string module_name = "torch.Tensor." + property_name;
return handle_torch_function((PyObject *)self, "__get__", nullptr, nullptr, torch_api.ptr(), module_name);
}
auto handle_torch_function_setter(THPVariable* self, const std::string& property_name, PyObject* value) -> int {
py::object torch_api = PyObject_FastGetAttrString(THPVariableClass, (char*)property_name.c_str());
std::string module_name = "torch.Tensor." + property_name;
if (value != nullptr)
{
py::tuple args_ = py::make_tuple(py::handle(value));
handle_torch_function((PyObject *)self, "__set__", args_.ptr(), nullptr, torch_api.ptr(), module_name);
}
else {
handle_torch_function((PyObject *)self, "__delete__", nullptr, nullptr, torch_api.ptr(), module_name);
}
return 0;
}
// Combines self and args into one tuple.
auto combine_self_args(PyObject *self, PyObject *args) -> py::tuple {
if (args == nullptr) {
return py::make_tuple(py::handle(self));
}
else if (self == nullptr) {
return py::reinterpret_borrow<py::tuple>(args);
}
auto py_args = py::reinterpret_borrow<py::tuple>(args);
size_t n = py_args.size();
auto args_ = py::tuple(n + 1);
args_[0] = py::handle(self);
for(const auto i : c10::irange(n)) {
args_[i+1] = py_args[i];
}
return args_;
}
auto handle_torch_function(PyObject* self, const std::string& func_name, PyObject* args, PyObject* kwargs, PyObject* torch_api, const std::string& module_name) -> PyObject* {
py::object torch_api_function = PyObject_FastGetAttrString(torch_api, (char*)func_name.c_str());
TORCH_INTERNAL_ASSERT(torch_api_function.ptr() != nullptr, "torch API function must exist");
py::tuple args_ = combine_self_args(self, args);
py::tuple py_types = py::make_tuple(py::handle(PyObject_Type(self)));
// NOLINTNEXTLINE(clang-diagnostic-writable-strings)
py::object torch_function = PyObject_FastGetAttrString(self, "__torch_function__");
py::object ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(torch_function.ptr(), torch_api_function.ptr(), py_types.ptr(), args_.ptr(), kwargs));
if (ret.ptr() == nullptr) {
// if an exception occurred in a user's implementation of
// __torch_function__, throw it
throw python_error();
}
if (ret.ptr() == Py_NotImplemented) {
std::string error_msg = "no implementation found for " + module_name + "." + func_name + "' on types that implement __torch_function__: [" + self->ob_type->tp_name + "]";
PyErr_SetString(PyExc_TypeError, error_msg.c_str());
throw python_error();
}
return ret.release().ptr();
}
auto handle_torch_function_no_python_arg_parser(const std::vector<py::handle> &overloaded_args, PyObject* args, PyObject* kwargs, const char* func_name, PyObject* torch_api_function, const char* module_name, const char* torch_function_name) -> PyObject* {
// overloaded_args already all have unique types
std::vector<py::object> overloaded_types;
overloaded_types.reserve(overloaded_args.size());
for (auto &arg : overloaded_args) {
overloaded_types.push_back(py::reinterpret_borrow<py::object>((PyObject *) Py_TYPE(arg.ptr())));
}
py::tuple py_types = py::cast(overloaded_types);
py::object ret;
for (auto &arg : overloaded_args) {
// NOLINTNEXTLINE(clang-diagnostic-writable-strings)
py::object torch_function = PyObject_FastGetAttrString(arg.ptr(), torch_function_name);
ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(torch_function.ptr(), torch_api_function, py_types.ptr(), args, kwargs, NULL));
if (ret.ptr() != Py_NotImplemented) {
// Return the reference to the result. This also covers the case where ret
// is NULL and __torch_function__ raised an exception, which we throw below
break;
}
}
if (ret.ptr() == nullptr) {
// if an exception occurred in a user's implementation of
// __torch_function__, throw it
throw python_error();
}
else if (ret.ptr() == Py_NotImplemented) {
// all __torch_function__ implementations in overloaded_args
// returned NotImplemented, so we raise a TypeError.
std::stringstream ss;
ss << "no implementation found for '" << module_name << "." << func_name
<< "' on types that implement " << torch_function_name << ": [";
for (auto &arg : overloaded_args) {
ss << arg.ptr()->ob_type->tp_name;
if (!arg.is(overloaded_args.back())) {
ss << ", ";
}
else {
ss << "]";
}
}
const std::string& tmp = ss.str();
PyErr_SetString(PyExc_TypeError, tmp.c_str());
throw python_error();
}
return ret.release().ptr();
}
auto handle_torch_function(PythonArgs &r, PyObject* self, PyObject* args, PyObject* kwargs, PyObject* torch_api, const char* module_name) -> PyObject* {
py::object torch_api_function = PyObject_FastGetAttrString(torch_api, (char*)r.get_func_name().c_str());
TORCH_INTERNAL_ASSERT(torch_api_function.ptr() != nullptr, "torch API function must exist");
py::object ret;
py::tuple args_ = combine_self_args(self, args);
// overloaded_args already all have unique types
std::vector<py::object> overloaded_types;
overloaded_types.reserve(r.signature.overloaded_args.size());
for (auto &arg : r.signature.overloaded_args) {
overloaded_types.push_back(py::reinterpret_borrow<py::object>((PyObject *) Py_TYPE(arg.ptr())));
}
py::tuple py_types = py::cast(overloaded_types);
return handle_torch_function_no_python_arg_parser(r.signature.overloaded_args, args_.ptr(), kwargs, r.get_func_name().c_str(), torch_api_function.ptr(), module_name);
}
auto handle_torch_function(PythonArgs &r, PyObject* args, PyObject* kwargs, PyObject* torch_api, const char* module_name) -> PyObject*
{
return handle_torch_function(r, nullptr, args, kwargs, torch_api, module_name);
}
auto handle_torch_function_indexing(PyObject* self, PyObject* index, PyObject* val) -> PyObject* {
const char *func_name = (val == nullptr) ? "__getitem__" : "__setitem__";
py::object index_tup;
if (PyTuple_Check(index)) {
index_tup = py::reinterpret_borrow<py::object>(index);
}
else {
index_tup = py::make_tuple(py::handle(index));
}
std::vector<py::handle> overridable_args;
is_tensor_and_append_overloaded(self, &overridable_args);
Py_ssize_t size = PyTuple_GET_SIZE(index_tup.ptr());
for (Py_ssize_t i = 0; i < size; i++) {
PyObject *obj = PyTuple_GetItem(index_tup.ptr(), i);
is_tensor_and_append_overloaded(obj, &overridable_args);
}
if (val != nullptr) is_tensor_and_append_overloaded(val, &overridable_args);
py::object func = PyObject_FastGetAttrString(THPVariableClass, (char *)func_name);
py::object args = (val == nullptr) ? py::make_tuple(py::handle(self), py::handle(index)) : py::make_tuple(py::handle(self), py::handle(index), py::handle(val));
return handle_torch_function_no_python_arg_parser(overridable_args, args.ptr(), nullptr, func_name, func.ptr(), "torch.Tensor");
}
/*
* obj has a __torch_function__ implementation and may either be a
* subclass of Tensor or a Tensor-like duck type. We may need to
* append this object to the overloaded_args vector, which tracks all
* of the arguments with distinct __torch_function__ implementations
* we've seen so far.
*
* If this is the first argument we've seen with __torch_function__
* defined, we unconditionally add obj to the overloaded_args vector.
*
* If we've already seen arguments with __torch_function__ defined,
* then we first need to check if obj is the same type as any of the
* entries in overloaded_args. If so, we can ignore obj since we
* already have an entry in overloaded_args with the same
* __torch_function__ implementation.
*
* If it's a different type, we then need to check if it's a subclass
* of one of the types we've already seen. If so, we need to insert an
* entry in overloaded_args for this type with higher precedence than
* the superclass.
*
* See torch._overrides._get_overloaded_types_and_args for the equivalent
* function in the Python __torch_function__ implementation.
*
* The precedence-determining algorithm implemented in this function is
* described in NEP-0018:
* https://numpy.org/neps/nep-0018-array-function-protocol.html
*
* 'overloaded_args' is a raw pointer to a vector of pybind11 handles
* that have distinct __torch_function__ implementations, in order of calling
* precedence.
*
* 'obj' is an object to check for a __torch_function__ implementation
*
* If changing this file in a way that can affect the __torch_function__
* overhead, please report the benchmarks in 'benchmarks/overrides_benchmark'.
* See the instructions in the 'README.md' in that directory.
*
*/
void append_overloaded_arg(std::vector<py::handle>* overloaded_args, PyObject* obj) {
bool class_not_seen_yet = true;
for (auto &arg : *overloaded_args) {
if (Py_TYPE(obj) == Py_TYPE(arg.ptr())) {
// obj is the same type as another parameter we've seen in a prior
// iteration of the loop over parameters so we already have an entry
// with the proper __torch_function__ implementation to call, so skip
// this parameter
class_not_seen_yet = false;
break;
}
}
if (class_not_seen_yet) {
int arg_index = overloaded_args->size();
for(const auto j : c10::irange(arg_index)) {
if (PyObject_IsInstance(obj, (PyObject*)(Py_TYPE((*overloaded_args)[j].ptr())))) {
// obj is a subclass of another object we've seen already so its
// __torch_function__ should be called first, therefore we
// insert it into overloaded_args before the superclass
arg_index = j;
break;
}
}
// add object to overloaded_args. If it's a subclass of another class
// we've already seen it will be inserted before the superclass,
// otherwise it will be inserted at the end of the array
overloaded_args->insert(overloaded_args->begin() + arg_index, obj);
}
}
bool is_tensor_and_append_overloaded(PyObject* obj, std::vector<py::handle>* overloaded_args) {
if (THPVariable_CheckExact(obj)) {
// torch.Tensor instances (not subclasses, except for Parameter)
return true;
}
if (check_has_torch_function(obj)) {
// tensor subclasses and unrelated objects with __torch_function__
append_overloaded_arg(overloaded_args, obj);
return true;
} else if (THPVariable_Check(obj)) {
// tensor subclasses without __torch_function__
return true;
}
return false;
}
bool is_scalar_list(PyObject* obj) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
for (const auto idx : c10::irange(size)) {
PyObject* iobj = tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
if (!THPUtils_checkScalar(iobj)) {
return false;
}
}
return true;
}
bool is_tensor_list_and_append_overloaded(PyObject* obj, std::vector<py::handle>* overloaded_args, int argnum, bool throw_error) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
for (long idx = 0; idx < size; idx++) {
PyObject* iobj = tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
if (!is_tensor_and_append_overloaded(iobj, overloaded_args)) {
if (throw_error) {
throw TypeError("expected Tensor as element %d in argument %d, but got %s",
static_cast<int>(idx), argnum, Py_TYPE(iobj)->tp_name);
}
return false;
}
}
return true;
}
bool is_float_or_complex_list(PyObject* obj) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
if (size > 0) {
PyObject* iobj = tuple ? PyTuple_GET_ITEM(obj, 0) : PyList_GET_ITEM(obj, 0);
if (!THPUtils_checkDouble(iobj) && !PyComplex_Check(iobj)) {
return false;
}
}
return true;
}
static bool is_int_list(PyObject* obj, int broadcast_size) {
if (PyTuple_Check(obj) || PyList_Check(obj)) {
if (PySequence_Size(obj) == 0) {
return true;
}
auto item = py::reinterpret_steal<py::object>(
PySequence_GetItem(obj, 0));
// NOTE: JIT tracer allows arbitrary scalar tensors to act as ints
// in an intlist argument. Even float or complex scalar tensors.
return (THPVariable_Check(item.ptr()) || THPUtils_checkIndex(item.ptr()));
}
// if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single int
return broadcast_size > 0 && THPUtils_checkLong(obj);
}
// argnum is needed for raising the TypeError, it's used in the error message.
auto FunctionParameter::check(PyObject* obj, std::vector<py::handle> &overloaded_args, int argnum) -> bool
{
switch (type_) {
case ParameterType::TENSOR: {
if (is_tensor_and_append_overloaded(obj, &overloaded_args)) {
return true;
}
return allow_numbers_as_tensors && THPUtils_checkScalar(obj);
}
case ParameterType::SCALAR:
case ParameterType::COMPLEX:
if (PyComplex_Check(obj)) {
return true;
}
// fallthrough
case ParameterType::DOUBLE: {
if (THPUtils_checkDouble(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return !var.requires_grad() && var.dim() == 0;
}
return false;
}
case ParameterType::INT64: {
if (THPUtils_checkLong(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) && !var.requires_grad() && var.dim() == 0;
}
return false;
}
case ParameterType::DIMNAME: return THPUtils_checkDimname(obj);
case ParameterType::DIMNAME_LIST: {
if (THPUtils_checkDimnameList(obj)) {
return true;
}
// if a size is specified (e.g. DimnameList[1]) we also allow passing a single Dimname
return size == 1 && THPUtils_checkDimname(obj);
}
case ParameterType::TENSOR_LIST: {
return is_tensor_list_and_append_overloaded(obj, &overloaded_args, argnum, true /* throw_error */);
}
case ParameterType::INT_LIST: return is_int_list(obj, size);
case ParameterType::FLOAT_LIST: return is_float_or_complex_list(obj);
case ParameterType::GENERATOR: return THPGenerator_Check(obj);
case ParameterType::BOOL: return PyBool_Check(obj);
case ParameterType::STORAGE: return isStorage(obj);
case ParameterType::PYOBJECT: return true;
case ParameterType::SCALARTYPE: return THPDtype_Check(obj) || THPPythonScalarType_Check(obj);
case ParameterType::LAYOUT: return THPLayout_Check(obj);
case ParameterType::MEMORY_FORMAT: return THPMemoryFormat_Check(obj);
case ParameterType::QSCHEME: return THPQScheme_Check(obj);
case ParameterType::DEVICE:
return THPUtils_checkLong(obj) || THPUtils_checkString(obj) || THPDevice_Check(obj);
case ParameterType::STREAM:
return THPStream_Check(obj);
case ParameterType::STRING: return THPUtils_checkString(obj);
default: throw std::runtime_error("unknown parameter type");
case ParameterType::SCALAR_LIST: {
return is_scalar_list(obj);
}
}
}
std::string FunctionParameter::type_name() const {
switch (type_) {
case ParameterType::TENSOR: return "Tensor";
case ParameterType::SCALAR: return "Number";
case ParameterType::INT64: return "int";
case ParameterType::DOUBLE: return "float";
case ParameterType::COMPLEX: return "complex";
case ParameterType::TENSOR_LIST: return "tuple of Tensors";
case ParameterType::INT_LIST: return "tuple of ints";
case ParameterType::FLOAT_LIST: return "tuple of floats";
case ParameterType::GENERATOR: return "torch.Generator";
case ParameterType::BOOL: return "bool";
case ParameterType::STORAGE: return "torch.Storage";
case ParameterType::PYOBJECT: return "object";
case ParameterType::SCALARTYPE: return "torch.dtype";
case ParameterType::LAYOUT: return "torch.layout";
case ParameterType::MEMORY_FORMAT: return "torch.memory_format";
case ParameterType::QSCHEME: return "torch.qscheme";
case ParameterType::DEVICE: return "torch.device";
case ParameterType::STRING: return "str";
case ParameterType::DIMNAME: return "name";
case ParameterType::DIMNAME_LIST: return "tuple of names";
case ParameterType::SCALAR_LIST: return "tuple of Scalars";
default: throw std::runtime_error("unknown parameter type");
}
}
static inline c10::optional<int64_t> parse_as_integer(const std::string& s) {
if (s.empty())
return c10::nullopt;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
char *str_end;
long ans = strtol(s.c_str(), &str_end, 0);
// *str_end == 0 if the entire string was parsed as an integer.
return (*str_end == 0) ? c10::optional<int64_t>(ans) : c10::nullopt;
}
/*
Parse default value of IntArrayRef declared at native_functions.yaml
There are two kinds of default values:
1. IntArrayRef[2] x=1 (where size=2, value={1,1}
2. IntArrayRef x={1,2,3} (where size=3, value={1,2,3}, note that there cannot be space after comma since native_parse.py uses ', ' to split args)
*/
static inline std::vector<int64_t> parse_intlist_args(const std::string& s, int64_t size) {
size_t n = s.size();
if (s.empty()) return std::vector<int64_t>();
// case 1. s is an int (e.g., s=2)
if (s[0] != '{') {
return std::vector<int64_t>(size, std::stol(s));
}
// case 2. s is a list of dims (e.g., s={1,2})
// since already checked left brace '{' above, here only checks right brace '}'
TORCH_CHECK(s[n - 1] == '}', "Default value of IntArrayRef is missing right brace '}', found ", s[n - 1]);
auto args = std::vector<int64_t>();
std::istringstream ss(s.substr(1, s.length() - 2)); // exclude '{' and '}'
std::string tok;
while(std::getline(ss, tok, ',')) {
args.emplace_back(std::stol(tok));
}
return args;
}
// Parse a string literal to remove quotes and escape sequences
static std::string parse_string_literal(c10::string_view str) {
TORCH_CHECK(str.length() >= 2, "String defaults must be quoted");
if (str.front() == '"') {
TORCH_CHECK(str.back() == '"',
"Mismatched quotes in string default: ", str);
} else {
TORCH_CHECK(str.front() == '\'' && str.back() == '\'',
"Invalid quotes in string default: ", str)
}
std::string parsed;
parsed.reserve(str.size());
for (size_t i = 1; i < str.size() - 1;) {
if (str[i] != '\\') {
parsed.push_back(str[i]);
++i;
continue;
}
// Handle escape sequences
TORCH_CHECK(i < str.size() - 2, "String ends with escaped final quote: ", str)
char c = str[i + 1];
switch (c) {
case '\\':
case '\'':
case '\"':
break;
case 'a':
c = '\a';
break;
case 'b':
c = '\b';
break;
case 'f':
c = '\f';
break;
case 'n':
c = '\n';
break;
case 'v':
c = '\v';
break;
case 't':
c = '\t';
break;
default:
TORCH_CHECK(false, "Unsupported escape sequence in string default: \\", str[i + 1]);
}
parsed.push_back(c);
i += 2;
}
return parsed;
}
void FunctionParameter::set_default_str(const std::string& str) {
if (str == "None") {
allow_none = true;
}
if (type_ == ParameterType::TENSOR) {
if (str != "None") {
throw std::runtime_error("default value for Tensor must be none, got: " + str);
}
} else if (type_ == ParameterType::INT64) {
default_int = atol(str.c_str());
} else if (type_ == ParameterType::BOOL) {
default_bool = (str == "True" || str == "true");
} else if (type_ == ParameterType::DOUBLE) {
default_double = atof(str.c_str());
} else if (type_ == ParameterType::COMPLEX) {
default_complex[0] = atof(str.c_str()); // TODO: parse "x + xj"?
default_complex[1] = 0;
} else if (type_ == ParameterType::SCALAR) {
if (str != "None") {
// we sometimes rely on integer-vs-float values, e.g. with arange.
const auto as_integer = parse_as_integer(str);
default_scalar = as_integer.has_value() ? at::Scalar(as_integer.value()) :
at::Scalar(atof(str.c_str()));
}
} else if (type_ == ParameterType::INT_LIST) {
if (str != "None") {
default_intlist = parse_intlist_args(str, size);
}
} else if (type_ == ParameterType::FLOAT_LIST) {
if (str != "None") {
throw std::runtime_error("Defaults not supported for float[]");
}
} else if (type_ == ParameterType::SCALARTYPE) {
if (str == "None") {
default_scalartype = at::ScalarType::Undefined;
} else if (str == "torch.int64") {
default_scalartype = at::ScalarType::Long;
} else {
throw std::runtime_error("invalid default value for ScalarType: " + str);
}
} else if (type_ == ParameterType::LAYOUT) {
if (str == "None") {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(allow_none);
} else if (str == "torch.strided") {
default_layout = at::Layout::Strided;
} else if (str == "torch.sparse_coo") {
default_layout = at::Layout::Sparse;
} else {
throw std::runtime_error("invalid default value for layout: " + str);
}
} else if (type_ == ParameterType::DEVICE) {
if (str != "None") {
throw std::runtime_error("invalid device: " + str);
}
} else if (type_ == ParameterType::STREAM) {
if (str != "None") {
throw std::runtime_error("invalid stream: " + str);
}
} else if (type_ == ParameterType::STRING) {
if (str != "None") {
default_string = parse_string_literal(str);
}
}
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionSignature::FunctionSignature(const std::string& fmt, int index)
: min_args(0)
, max_args(0)
, max_pos_args(0)
, index(index)
, hidden(false)
, deprecated(false)
{
auto open_paren = fmt.find('(');
if (open_paren == std::string::npos) {
throw std::runtime_error("missing opening parenthesis: " + fmt);
}
name = fmt.substr(0, open_paren);
bool allow_numbers_as_tensors = should_allow_numbers_as_tensors(name);
auto last_offset = open_paren + 1;
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
auto next_offset = last_offset;
bool keyword_only = false;
bool done = false;
while (!done) {
auto offset = fmt.find(", ", last_offset);
if (offset == std::string::npos) {
offset = fmt.find(')', last_offset);
done = true;
next_offset = offset+ 1;
// this 'if' happens for an empty parameter list, i.e. fn().
if (offset == last_offset) {
last_offset = next_offset;
break;
}
} else {
next_offset = offset + 2;
}
if (offset == std::string::npos) {
throw std::runtime_error("missing closing parenthesis: " + fmt);
}
if (offset == last_offset) {
throw std::runtime_error("malformed signature: " + fmt);
}
auto param_str = fmt.substr(last_offset, offset - last_offset);
last_offset = next_offset;
if (param_str == "*") {
keyword_only = true;
} else {
params.emplace_back(param_str, keyword_only);
params.back().allow_numbers_as_tensors = allow_numbers_as_tensors;
}
}
if (fmt.substr(last_offset) == "|deprecated") {
hidden = true;
// TODO: raise warning when parsing deprecated signatures
deprecated = true;
} else if (fmt.substr(last_offset) == "|hidden") {
hidden = true;
}
max_args = params.size();
// count the number of non-optional args
for (auto& param : params) {
if (!param.optional) {
min_args++;
}
if (!param.keyword_only) {
max_pos_args++;
}
}
}
std::string FunctionSignature::toString() const {
// TODO: consider printing more proper schema strings with defaults, optionals, etc.
std::ostringstream ss;
bool keyword_already = false;
ss << "(";
int i = 0;
for (auto& param : params) {
if (i != 0) {
ss << ", ";
}
if (param.keyword_only && !keyword_already) {
ss << "*, ";
keyword_already = true;
}
ss << param.type_name() << " " << param.name;
i++;
}
ss << ")";
return ss.str();
}
[[noreturn]]
static void extra_args(const FunctionSignature& signature, ssize_t nargs) {
const long max_pos_args = signature.max_pos_args;
const long min_args = signature.min_args;
const long nargs_ = nargs;
if (min_args != max_pos_args) {
throw TypeError("%s() takes from %ld to %ld positional arguments but %ld were given",
signature.name.c_str(), min_args, max_pos_args, nargs_);
}
throw TypeError("%s() takes %ld positional argument%s but %ld %s given",
signature.name.c_str(),
max_pos_args, max_pos_args == 1 ? "" : "s",
nargs_, nargs == 1 ? "was" : "were");
}
[[noreturn]]
static void missing_args(const FunctionSignature& signature, int idx) {
int num_missing = 0;
std::stringstream ss;
auto& params = signature.params;
for (auto it = params.begin() + idx; it != params.end(); ++it) {
if (!it->optional) {
if (num_missing > 0) {
ss << ", ";
}
ss << '"' << it->name << '"';
num_missing++;
}
}
throw TypeError("%s() missing %d required positional argument%s: %s",
signature.name.c_str(),
num_missing,
num_missing == 1 ? "s" : "",
ss.str().c_str());
}
static ssize_t find_param(FunctionSignature& signature, PyObject* name) {
ssize_t i = 0;
for (auto& param : signature.params) {
int cmp = PyObject_RichCompareBool(name, param.python_name, Py_EQ);
if (cmp < 0) {
throw python_error();
} else if (cmp) {
return i;
}
i++;
}
return -1;
}
[[noreturn]]
static void extra_kwargs(FunctionSignature& signature, PyObject* kwargs, ssize_t num_pos_args) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
PyObject *key, *value;
ssize_t pos = 0;
while (PyDict_Next(kwargs, &pos, &key, &value)) {
if (!THPUtils_checkString(key)) {
throw TypeError("keywords must be strings");
}
auto param_idx = find_param(signature, key);
if (param_idx < 0) {
throw TypeError("%s() got an unexpected keyword argument '%s'",
signature.name.c_str(), THPUtils_unpackString(key).c_str());
}
if (param_idx < num_pos_args) {
throw TypeError("%s() got multiple values for argument '%s'",
signature.name.c_str(), THPUtils_unpackString(key).c_str());
}
}
// this should never be hit
throw TypeError("invalid keyword arguments");
}
bool FunctionSignature::parse(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* dst[], // NOLINT
bool raise_exception) {
auto nargs = args ? PyTuple_GET_SIZE(args) : 0;
ssize_t remaining_kwargs = kwargs ? PyDict_Size(kwargs) : 0;
ssize_t arg_pos = 0;
bool allow_varargs_intlist = false;
// if there is a single positional IntArrayRef argument, i.e. expand(..), view(...),
// allow a var-args style IntArrayRef, so expand(5,3) behaves as expand((5,3))
if (max_pos_args == 1 && params[0].type_ == ParameterType::INT_LIST) {
allow_varargs_intlist = true;
}
if (nargs > max_pos_args && !allow_varargs_intlist) {
if (raise_exception) {
// foo() takes takes 2 positional arguments but 3 were given
extra_args(*this, nargs);
}
return false;
}
if (!overloaded_args.empty()) {
overloaded_args.clear();
}
int i = 0;
if (self != nullptr && check_has_torch_function(self)) {
append_overloaded_arg(&this->overloaded_args, self);
}
for (auto& param : params) {
PyObject* obj = nullptr;
bool is_kwd = false;
if (arg_pos < nargs) {
// extra positional args given after single positional IntArrayRef arg
if (param.keyword_only) {
if (raise_exception) {
extra_args(*this, nargs);
}
return false;
}
obj = PyTuple_GET_ITEM(args, arg_pos);
} else if (kwargs) {
obj = PyDict_GetItem(kwargs, param.python_name);
for (PyObject *numpy_name: param.numpy_python_names) {
if (obj) {
break;
}
obj = PyDict_GetItem(kwargs, numpy_name);
}
is_kwd = true;
}
if ((!obj && param.optional) || (obj == Py_None && param.allow_none)) {
dst[i++] = nullptr;
} else if (!obj) {
if (raise_exception) {
// foo() missing 1 required positional argument: "b"
missing_args(*this, i);
}
return false;
} else if (param.check(obj, this->overloaded_args, i)) {
dst[i++] = obj;
// XXX: the Variable check is necessary because sizes become tensors when
// tracer is enabled. This behavior easily leads to ambiguities, and we
// should avoid having complex signatures that make use of it...
} else if (allow_varargs_intlist && arg_pos == 0 && !is_kwd &&
THPUtils_checkIndex(obj)) {
// take all positional arguments as this parameter
// e.g. permute(1, 2, 3) -> permute((1, 2, 3))
dst[i++] = args;
arg_pos = nargs;
continue;
} else if (raise_exception) {
if (is_kwd) {
// foo(): argument 'other' must be str, not int
throw TypeError("%s(): argument '%s' must be %s, not %s",
name.c_str(), param.name.c_str(), param.type_name().c_str(),
Py_TYPE(obj)->tp_name);
} else {
// foo(): argument 'other' (position 2) must be str, not int
throw TypeError("%s(): argument '%s' (position %ld) must be %s, not %s",
name.c_str(), param.name.c_str(), static_cast<long>(arg_pos + 1),
param.type_name().c_str(), Py_TYPE(obj)->tp_name);
}
} else {
return false;
}
if (!is_kwd) {
arg_pos++;
} else if (obj) {
remaining_kwargs--;
}
}
if (remaining_kwargs > 0) {
if (raise_exception) {
// foo() got an unexpected keyword argument "b"
extra_kwargs(*this, kwargs, nargs);
}
return false;
}
return true;
}
PythonArgParser::PythonArgParser(std::vector<std::string> fmts, bool traceable)
: max_args(0)
, traceable(traceable)
{
int index = 0;
for (auto& fmt : fmts) {
signatures_.emplace_back(fmt, index);
++index;
}
for (auto& signature : signatures_) {
if (signature.max_args > max_args) {
max_args = signature.max_args;
}
}
if (signatures_.size() > 0) {
function_name = signatures_[0].name;
}
// Check deprecated signatures last
std::stable_partition(signatures_.begin(), signatures_.end(),
[](const FunctionSignature & sig) {
return !sig.deprecated;
});
}
void PythonArgParser::check_deprecated(const FunctionSignature & signature) {
if (signature.deprecated) {
auto msg = c10::str(
"This overload of ", signature.name, " is deprecated:\n\t",
signature.name, signature.toString());
auto signatures = get_signatures();
if (!signatures.empty()) {
msg += "\nConsider using one of the following signatures instead:";
for (const auto & sig : signatures) {
msg += "\n\t";
msg += signature.name;
msg += sig;
}
}
TORCH_WARN_ONCE(msg);
}
}
PythonArgs PythonArgParser::raw_parse(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* parsed_args[]) { // NOLINT
if (signatures_.size() == 1) {
auto& signature = signatures_[0];
signature.parse(self, args, kwargs, parsed_args, true);
check_deprecated(signature);
return PythonArgs(traceable, signature, parsed_args);
}
for (auto& signature : signatures_) {
if (signature.parse(self, args, kwargs, parsed_args, false)) {
check_deprecated(signature);
return PythonArgs(traceable, signature, parsed_args);
}
}
print_error(self, args, kwargs, parsed_args);
}
void PythonArgParser::print_error(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* parsed_args[]) { // NOLINT
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
auto num_args = PyTuple_GET_SIZE(args) + (kwargs ? PyDict_Size(kwargs) : 0);
std::vector<int> plausible_idxs;
ssize_t i = 0;
for (auto& signature : signatures_) {
if (num_args >= signature.min_args && num_args <= signature.max_args && !signature.hidden) {
plausible_idxs.push_back(i);
}
i++;
}
if (plausible_idxs.size() == 1) {
auto& signature = signatures_[plausible_idxs[0]];
signature.parse(self, args, kwargs, parsed_args, true);
}
auto options = get_signatures();
auto msg = torch::format_invalid_args(args, kwargs, function_name + "()", options);
throw TypeError("%s", msg.c_str());
}
std::vector<std::string> PythonArgParser::get_signatures() const {
std::vector<std::string> options;
for (auto& signature : signatures_) {
if (!signature.hidden) {
options.push_back(signature.toString());
}
}
return options;
}
at::Tensor PythonArgs::tensor_slow(int i) {
PyObject* obj = args[i];
if (!obj) {
return at::Tensor();
}
if (THPVariable_Check(obj)) {
return THPVariable_Unpack(obj);
}
at::Scalar scalar;
if (PyBool_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackBool(obj));
} else if (THPUtils_checkLong(obj)) {
scalar = at::Scalar(THPUtils_unpackLong(obj));
} else if (PyComplex_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackComplexDouble(obj));
} else if (THPUtils_checkDouble(obj)) {
scalar = at::Scalar(THPUtils_unpackDouble(obj));
} else {
// NB: Are you here because you passed None to a Variable method,
// and you expected an undefined tensor to be returned? Don't add
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
throw TypeError("expected Tensor as argument %d, but got %s", i,
Py_TYPE(obj)->tp_name);
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
at::Tensor tensor = scalar_to_tensor(scalar);
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
return tensor;
}
at::Scalar PythonArgs::scalar_slow(int i) {
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, jit::NumberType::get());
}
return scalar_slow(args[i]);
}
at::Scalar PythonArgs::scalar_slow(PyObject* arg) {
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't currently
// handle most NumPy scalar types except np.float64.
if (THPVariable_Check(arg)) {
return THPVariable_Unpack(arg).item();
}
if (THPUtils_checkLong(arg)) {
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
}
if (PyBool_Check(arg)) {
return at::Scalar(THPUtils_unpackBool(arg));
}
if (PyComplex_Check(arg)) {
return at::Scalar(THPUtils_unpackComplexDouble(arg));
}
return at::Scalar(THPUtils_unpackDouble(arg));
}
} // namespace torch