pytorch/torch/_dynamo/variables/sdpa.py
Lucas Kabela aa9c96af04 [BE][Typing][Dynamo] Type misc files in torch/_dynamo/variables/ (#166569)
Provides type coverage to ~3000 LOC and 200 methods in  `torch/_dynamo/variables/`

This is the first part of the final step to having 100% strict type coverage in dynamo - see previous comments in https://github.com/pytorch/pytorch/pull/166535 (combined into this one PR because ghstack was giving issues...)

### Coverage report:
```
mypy torch_dynamo/variables --linecount-report /tmp/coverage_log
```
Compare before to after - we go from 3826 to 7221 lines covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166569
Approved by: https://github.com/williamwen42
2025-10-31 16:56:50 +00:00

89 lines
2.7 KiB
Python

from inspect import getattr_static
from typing import Any, Sequence, TYPE_CHECKING, TypeGuard
from torch._guards import Source
from torch.backends.cuda import SDPAParams
from torch.fx.proxy import Proxy
from ..bytecode_transformation import create_call_function
from ..exc import Unsupported
from ..source import AttrSource
from .base import VariableTracker
if TYPE_CHECKING:
from torch._dynamo.codegen import PyCodegen
from torch._dynamo.symbolic_convert import InstructionTranslator
PARAM_NAMES = [
"query",
"key",
"value",
"attn_mask",
"dropout",
"is_causal",
"enable_gqa",
]
class SDPAParamsVariable(VariableTracker):
"""Represents the c++ params struct for scaled dot product attention.
This is a read-only container."""
@staticmethod
def create(
tx: "InstructionTranslator", value: Any, source: Source
) -> VariableTracker:
from .torch import TorchInGraphFunctionVariable
params = [
VariableTracker.build(tx, getattr(value, p), AttrSource(source, p))
for p in PARAM_NAMES
]
return TorchInGraphFunctionVariable(SDPAParams).call_function(tx, params, {})
def __init__(
self, proxy: Proxy, param_vars: Sequence[VariableTracker], **kwargs: Any
) -> None:
self.proxy = proxy
self.param_vars = param_vars
super().__init__(**kwargs)
def reconstruct(self, codegen: "PyCodegen") -> None:
assert self.source is None
assert self.param_vars is not None
codegen.add_push_null(
lambda: codegen.load_import_from("torch._C", "_SDPAParams")
)
codegen.foreach(self.param_vars)
codegen.extend_output(create_call_function(len(self.param_vars), False))
def as_proxy(self) -> Proxy:
return self.proxy
def var_getattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker:
import torch._C
from .builder import wrap_fx_proxy
from .misc import GetAttrVariable
try:
getattr_static(torch._C._SDPAParams, name)
except AttributeError:
# Using raise from is too verbose here
raise Unsupported(
f"Unsupported torch._C._SDPAParams attribute {name}"
) from None
proxy = GetAttrVariable.create_getattr_proxy(self.as_proxy(), name)
if self.source is not None:
return wrap_fx_proxy(
tx=tx, proxy=proxy, source=AttrSource(self.source, name)
)
else:
return wrap_fx_proxy(tx=tx, proxy=proxy)
@staticmethod
def is_sdpa_params(value: Any) -> TypeGuard["SDPAParams"]:
return value is SDPAParams