mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: `isCompleteTensor()` only returns true when both scalar type and shape is present. All dimensions in the shape must be static. This high requirement is unnecessary for many use cases such as when only rank or scalar type needs to be known. Pull Request resolved: https://github.com/pytorch/pytorch/pull/48162 Reviewed By: malfet Differential Revision: D25340823 Pulled By: bzinodev fbshipit-source-id: 1fef61f44918f4339dd6654fb725b18cd58d99cf
280 lines
11 KiB
Python
280 lines
11 KiB
Python
|
|
import torch
|
|
import torch.onnx.symbolic_helper as sym_help
|
|
import torch.onnx.symbolic_opset9 as sym_opset9
|
|
|
|
from torch.onnx.symbolic_helper import parse_args, _unimplemented, _block_list_in_opset, _try_get_scalar_type
|
|
from torch.onnx.symbolic_opset9 import _cast_Float # type: ignore
|
|
|
|
import warnings
|
|
|
|
# Note [ONNX operators that are added/updated from opset 8 to opset 9]
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# New operators:
|
|
# Compress
|
|
# ConstantOfShape
|
|
# EyeLike
|
|
# MaxUnpool
|
|
# OneHot
|
|
# Sinh
|
|
# Cosh
|
|
# Asinh
|
|
# Acosh
|
|
# Atanh
|
|
# Shrink
|
|
# IsNaN
|
|
# Sign
|
|
# Erf
|
|
# Scatter
|
|
# Where
|
|
# NonZero
|
|
# TfIdfVectorizer
|
|
# MeanVarianceNormalization
|
|
#
|
|
# Updated operators:
|
|
# BatchNormalization: removed spatial attribute.
|
|
# Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported.
|
|
# Cast: more data types{string} supported.
|
|
# Upsample: moved scales from attribute to input.
|
|
# Scan
|
|
|
|
block_listed_operators = [
|
|
"nonzero", "where", "scatter", "scatter_add", "erf", "sign", "isnan", "gather",
|
|
"arange", "masked_fill",
|
|
"index_fill", "index_copy"
|
|
]
|
|
|
|
for block_listed_op in block_listed_operators:
|
|
vars()[block_listed_op] = _block_list_in_opset(block_listed_op)
|
|
|
|
|
|
def _interpolate(name, dim, interpolate_mode):
|
|
def symbolic_fn(g, input, output_size, *args):
|
|
scales, align_corners = sym_help._get_interpolate_attributes(g, interpolate_mode, args)
|
|
sym_help._interpolate_warning(interpolate_mode)
|
|
align_corners = sym_help._maybe_get_scalar(align_corners)
|
|
if align_corners:
|
|
return _unimplemented(name, "align_corners == True")
|
|
output_size = sym_help._maybe_get_const(output_size, 'is')
|
|
if sym_help._is_value(output_size):
|
|
return _unimplemented(name, "torch._C.Value (output_size) indexing")
|
|
if scales is None:
|
|
scales = [1. if i < 2 else
|
|
float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)])
|
|
for i in range(0, dim)]
|
|
return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales)
|
|
return symbolic_fn
|
|
|
|
|
|
upsample_nearest1d = _interpolate('upsample_nearest1d', 3, "nearest")
|
|
upsample_nearest2d = _interpolate('upsample_nearest2d', 4, "nearest")
|
|
upsample_nearest3d = _interpolate('upsample_nearest3d', 5, "nearest")
|
|
upsample_linear1d = _interpolate('upsample_linear1d', 3, "linear")
|
|
upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, "linear")
|
|
upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, "linear")
|
|
|
|
|
|
def __interpolate(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor):
|
|
align_corners = sym_help._maybe_get_const(align_corners, 'b')
|
|
if not sym_help._is_none(align_corners) and align_corners:
|
|
return _unimplemented("interpolate", "align_corners == True")
|
|
|
|
if not sym_help._is_none(scale_factor) and sym_help._is_value(scale_factor):
|
|
return _unimplemented("interpolate", "dynamic scales in opset 8")
|
|
|
|
if not sym_help._is_none(size) and sym_help._is_value(size):
|
|
return _unimplemented("interpolate", "dynamic size in opset 8")
|
|
|
|
scales, mode = sym_help._interpolate_get_scales_and_mode(g, input, size, scale_factor,
|
|
mode , align_corners)
|
|
return g.op("Upsample", input, mode_s=mode, scales_f=scales)
|
|
|
|
|
|
# NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation
|
|
# issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which
|
|
# is lost after casting.
|
|
def _try_cast_integer_to_float(g, *args):
|
|
floating_scalar_types = ['Half', 'Float', 'Double']
|
|
old_type = None
|
|
# Cast the input tensor to Float if its scalarType is known and is not floating number.
|
|
# If casting is performed, return the old scalarType, otherwise return None.
|
|
arg0_type = args[0].type().scalarType()
|
|
if arg0_type is not None:
|
|
old_type = arg0_type
|
|
if old_type not in floating_scalar_types:
|
|
args = tuple(_cast_Float(g, arg, False) for arg in args)
|
|
else:
|
|
return (None,) + args
|
|
else:
|
|
warnings.warn("Only floating datatype is supported for these operators: "
|
|
"{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause "
|
|
"the onnx model to be incorrect, if inputs have integer datatypes.")
|
|
return (old_type,) + args
|
|
|
|
|
|
def _cast_to_type(g, input, to_type):
|
|
if to_type is None:
|
|
return input
|
|
return getattr(sym_opset9, '_cast_{}'.format(to_type))(g, input, False)
|
|
|
|
|
|
def _comparison_operator(g, input, other, op_name):
|
|
other = sym_help._maybe_get_scalar(other)
|
|
other = sym_help._if_scalar_type_as(g, other, input)
|
|
_, input, other = _try_cast_integer_to_float(g, input, other)
|
|
return g.op(op_name, input, other)
|
|
|
|
|
|
# NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten},
|
|
# integer input type not supported in opset8. Cast to float if possible.
|
|
def gt(g, input, other):
|
|
return _comparison_operator(g, input, other, "Greater")
|
|
|
|
|
|
def lt(g, input, other):
|
|
return _comparison_operator(g, input, other, "Less")
|
|
|
|
|
|
def bmm(g, self, other):
|
|
if _try_get_scalar_type(self):
|
|
old_type, self, other = _try_cast_integer_to_float(g, self, other)
|
|
return _cast_to_type(g, g.op("MatMul", self, other), old_type)
|
|
else:
|
|
return g.op("MatMul", self, other)
|
|
|
|
|
|
def matmul(g, self, other):
|
|
return bmm(g, self, other)
|
|
|
|
|
|
def prelu(g, self, weight):
|
|
self_rank = sym_help._get_tensor_rank(self)
|
|
if self_rank is not None and self_rank > 2:
|
|
weight = g.op("Unsqueeze", weight, axes_i=list(range(1, self_rank - 1)))
|
|
if _try_get_scalar_type(self):
|
|
old_type, self, weight = _try_cast_integer_to_float(g, self, weight)
|
|
return _cast_to_type(g, g.op("PRelu", self, weight), old_type)
|
|
else:
|
|
return g.op("PRelu", self, weight)
|
|
|
|
|
|
def mm(g, self, other):
|
|
# Create a dummy C tensor. Only needed for API purposes, the value is
|
|
# since beta = 0
|
|
ty = sym_help._try_get_scalar_type(self, other).lower()
|
|
C = g.constant(0, [1], ty)
|
|
if _try_get_scalar_type(self):
|
|
old_type, self, other, C = _try_cast_integer_to_float(g, self, other, C)
|
|
return _cast_to_type(g, g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0), old_type)
|
|
else:
|
|
return g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0)
|
|
|
|
|
|
@parse_args('v', 'v', 'v', 't', 't')
|
|
def addmm(g, self, mat1, mat2, beta, alpha):
|
|
if _try_get_scalar_type(self):
|
|
old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2)
|
|
return _cast_to_type(
|
|
g, g.op("Gemm", mat1, mat2, self,
|
|
beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha)), old_type)
|
|
else:
|
|
return g.op("Gemm", mat1, mat2, self, beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha))
|
|
|
|
|
|
def flatten(g, input, start_dim, end_dim):
|
|
start_dim_i = sym_help._get_const(start_dim, 'i', 'start_dim')
|
|
end_dim_i = sym_help._get_const(end_dim, 'i', 'end_dim')
|
|
|
|
dim = input.type().dim()
|
|
if end_dim_i < 0 :
|
|
end_dim_i = dim + end_dim_i
|
|
# use ONNX's Flatten operator for cases where the output shape is 2D
|
|
if start_dim_i == 1 and end_dim_i == dim - 1 :
|
|
if _try_get_scalar_type(input):
|
|
old_type, input = _try_cast_integer_to_float(g, input)
|
|
return _cast_to_type(g, g.op("Flatten", input, axis_i=start_dim_i), old_type)
|
|
else:
|
|
return g.op("Flatten", input, axis_i=start_dim_i)
|
|
if start_dim_i == 0 and end_dim_i == dim - 2 :
|
|
if _try_get_scalar_type(input):
|
|
old_type, input = _try_cast_integer_to_float(g, input)
|
|
return _cast_to_type(g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type)
|
|
else:
|
|
return g.op("Flatten", input, axis_i=end_dim_i + 1)
|
|
|
|
return sym_opset9.flatten(g, input, start_dim, end_dim)
|
|
|
|
|
|
def _constant_fill(g, sizes, dtype, const_value):
|
|
if dtype is None:
|
|
dtype = 6 # float
|
|
if not sym_help.scalar_type_to_pytorch_type[dtype].is_floating_point:
|
|
result = g.op(
|
|
"ConstantFill", sizes, dtype_i=sym_help.cast_pytorch_to_onnx["Float"], input_as_shape_i=1, value_f=const_value)
|
|
return sym_help._cast_func_template(sym_help.scalar_type_to_onnx[dtype], g, result, None)
|
|
else:
|
|
return g.op("ConstantFill", sizes, dtype_i=sym_help.scalar_type_to_onnx[dtype], input_as_shape_i=1, value_f=const_value)
|
|
|
|
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
|
|
def empty(g, sizes, dtype, layout, device, pin_memory=False, memory_format=None):
|
|
return zeros(g, sizes, dtype, layout, device, pin_memory)
|
|
|
|
|
|
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
|
|
def empty_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None):
|
|
return zeros_like(g, input, dtype, layout, device, pin_memory)
|
|
|
|
@parse_args('v', 'i', 'v', 'v', 'v')
|
|
def zeros(g, sizes, dtype, layout, device, pin_memory=False):
|
|
# NOTE: no way to set device and layout in ONNX, so we ignore it
|
|
return _constant_fill(g, sizes, dtype, 0)
|
|
|
|
|
|
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
|
|
def zeros_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None):
|
|
shape = g.op("Shape", input)
|
|
return _constant_fill(g, shape, dtype, 0)
|
|
|
|
|
|
@parse_args('v', 'i', 'v', 'v', 'v')
|
|
def ones(g, sizes, dtype, layout, device, pin_memory=False):
|
|
return _constant_fill(g, sizes, dtype, 1)
|
|
|
|
|
|
@parse_args('v', 'i', 'v', 'v', 'v', 'v')
|
|
def ones_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None):
|
|
shape = g.op("Shape", input)
|
|
return _constant_fill(g, shape, dtype, 1)
|
|
|
|
|
|
def full(g, sizes, value, dtype, layout, device, pin_memory=False):
|
|
const_value = sym_help._maybe_get_const(value, 't')
|
|
if sym_help._is_value(const_value):
|
|
tmp = zeros(g, sizes, dtype, layout, device)
|
|
return sym_opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1)))
|
|
else:
|
|
dtype = sym_help._get_const(dtype, 'i', 'dtype')
|
|
return _constant_fill(g, sizes, dtype, const_value)
|
|
|
|
|
|
@parse_args('v', 'f', 'i', 'v', 'v', 'v', 'v')
|
|
def full_like(g, input, fill_value, dtype, layout, device, pin_memory=False, memory_format=None):
|
|
shape = g.op("Shape", input)
|
|
return _constant_fill(g, shape, dtype, fill_value)
|
|
|
|
|
|
def repeat(g, self, repeats):
|
|
if not sym_help._is_value(repeats):
|
|
repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
|
|
if sym_help._is_packed_list(repeats):
|
|
repeat_size_len = len(sym_help._unpack_list(repeats))
|
|
else:
|
|
const_repeats = sym_help._maybe_get_const(repeats, 'is')
|
|
repeat_size_len = len(const_repeats)
|
|
if self.isCompleteTensor():
|
|
sizes = self.type().sizes()
|
|
diff_dims = repeat_size_len - len(sizes)
|
|
if diff_dims > 0:
|
|
self = sym_opset9.view(g, self, g.op("Constant", value_t=torch.tensor([1] * diff_dims + sizes)))
|
|
return g.op("Tile", self, repeats)
|