pytorch/android/test_app/make_assets_custom.py
Jiakai Liu ff17b83fd8 [pytorch][ci] add custom selective build flow for android build (#40199)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40199

Mobile custom selective build has already been covered by `test/mobile/custom_build/build.sh`.
It builds a CLI binary with host-toolchain and runs on host machine to
check correctness of the result.

But that custom build test doesn't cover the android/gradle build part.
And we cannot use it to measure and track the in-APK size of custom
build library.

So this PR adds the selective build test coverage for android NDK build.
Also integrate with the CI to upload the custom build size to scuba.

TODO:
Ideally it should build android/test_app and measure the in-APK size.
But the test_app hasn't been covered by any CI yet and is currently
broken, so build & measure AAR instead (which can be inaccurate as we
plan to pack C++ header files into AAR soon).

Sample result: https://fburl.com/scuba/pytorch_binary_size/skxwb1gh
```

+---------------------+-------------+-------------------+-----------+----------+
|     build_mode      |    arch     |        lib        | Build Num |   Size   |
+---------------------+-------------+-------------------+-----------+----------+
| custom-build-single | armeabi-v7a | libpytorch_jni.so |   5901579 | 3.68 MiB |
| prebuild            | armeabi-v7a | libpytorch_jni.so |   5901014 | 6.23 MiB |
| prebuild            | x86_64      | libpytorch_jni.so |   5901014 | 7.67 MiB |
+---------------------+-------------+-------------------+-----------+----------+
```

Test Plan: Imported from OSS

Differential Revision: D22111115

Pulled By: ljk53

fbshipit-source-id: 11d24efbc49a85f851ecd0e481d14123f405b3a9
2020-07-02 21:11:01 -07:00

26 lines
806 B
Python

"""
This is a script for PyTorch Android custom selective build test. It prepares
MobileNetV2 TorchScript model, and dumps root ops used by the model for custom
build script to create a tailored build which only contains these used ops.
"""
import torch
import torchvision
import yaml
# Download and trace the model.
model = torchvision.models.mobilenet_v2(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
# TODO: create script model with `torch.jit.script`
traced_script_module = torch.jit.trace(model, example)
# Save traced TorchScript model.
traced_script_module.save("MobileNetV2.pt")
# Dump root ops used by the model (for custom build optimization).
ops = torch.jit.export_opnames(traced_script_module)
with open('MobileNetV2.yaml', 'w') as output:
yaml.dump(ops, output)