pytorch/torch/csrc/jit/codegen/fuser/interface.cpp
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

113 lines
3.2 KiB
C++

#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/compiler.h>
#include <torch/csrc/jit/codegen/fuser/executor.h>
#include <torch/csrc/jit/codegen/fuser/fallback.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <c10/util/Flags.h>
#include <stdexcept>
C10_DEFINE_bool(torch_jit_enable_cpu_fusion, false, "enable cpu fusion");
namespace torch {
namespace jit {
namespace detail {
// Note: CPU fusion is currently disabled due to test flakiness
#if defined(FBCODE_CAFFE2)
bool cpu_fuser_enabled = true;
#else
bool cpu_fuser_enabled = false;
#endif
bool gpu_fuser_enabled = true;
} // namespace detail
int64_t registerFusion(const Node* fusion_group) {
return fuser::registerFusion(fusion_group);
}
void runFusion(const int64_t key, Stack& stack) {
const auto result = fuser::runFusion(key, stack);
if (!result)
fuser::runFallback(key, stack);
}
bool canFuseOnCPU() {
return fuser::hasFusionBackend(DeviceType::CPU) &&
(detail::cpu_fuser_enabled || FLAGS_torch_jit_enable_cpu_fusion);
}
bool canFuseOnGPU() {
return fuser::hasFusionBackend(DeviceType::CUDA) && detail::gpu_fuser_enabled;
}
void overrideCanFuseOnCPU(bool value) {
detail::cpu_fuser_enabled = value;
}
void overrideCanFuseOnGPU(bool value) {
detail::gpu_fuser_enabled = value;
}
// Uses the above interface by stuffing the graph into a node and treating that
// node as a fusion group.
std::vector<at::Tensor> debugLaunchGraph(
Graph& graph,
at::ArrayRef<at::Tensor> inputs) {
// Creates a fusion group node
auto wrapper_graph = std::make_shared<Graph>();
Node* fusion_group = wrapper_graph->insertNode(
wrapper_graph->createWithSubgraph(prim::FusionGroup));
fusion_group->g_(attr::Subgraph, graph.copy());
for (size_t i = 0; i < graph.inputs().size(); ++i) {
fusion_group->addInput(wrapper_graph->addInput());
}
for (size_t i = 0; i < graph.outputs().size(); ++i) {
wrapper_graph->registerOutput(fusion_group->addOutput());
}
// Creates the stack, registers and runs the fusion
Stack stack = fmap<IValue>(inputs);
const auto key = fuser::registerFusion(fusion_group);
fuser::runFusion(key, stack);
return fmap(stack, [](const IValue& iv) { return iv.toTensor(); });
}
std::string debugGetFusedKernelCode(
Graph& graph,
at::ArrayRef<at::Tensor> inputs) {
// Creates a fusion group node
auto wrapper_graph = std::make_shared<Graph>();
Node* fusion_group = wrapper_graph->insertNode(
wrapper_graph->createWithSubgraph(prim::FusionGroup));
fusion_group->g_(attr::Subgraph, graph.copy());
for (size_t i = 0; i < graph.inputs().size(); ++i) {
fusion_group->addInput(wrapper_graph->addInput());
}
for (size_t i = 0; i < graph.outputs().size(); ++i) {
wrapper_graph->registerOutput(fusion_group->addOutput());
}
// Creates the stack, registers and runs the fusion
Stack stack = fmap<IValue>(inputs);
const auto key = fuser::registerFusion(fusion_group);
std::string code;
if (!fuser::runFusion(key, stack, &code)) {
throw std::runtime_error("Could not run fusion for graph");
}
return code;
}
size_t nCompiledKernels() {
return fuser::nCompiledKernels();
}
} // namespace jit
} // namespace torch