mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call.
This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Test Plan:
CI
Rollback Plan:
Differential Revision: D80181887
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160532
Approved by: https://github.com/henryoier, https://github.com/ezyang
176 lines
5.4 KiB
Python
176 lines
5.4 KiB
Python
# Owner(s): ["oncall: export"]
|
|
# ruff: noqa: F841
|
|
# flake8: noqa
|
|
|
|
import itertools
|
|
import unittest
|
|
|
|
import torch
|
|
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
|
|
from torch.testing._internal.common_device_type import (
|
|
instantiate_device_type_tests,
|
|
ops,
|
|
)
|
|
from torch.testing._internal.common_methods_invocations import (
|
|
op_db,
|
|
skip,
|
|
skipOps,
|
|
xfail,
|
|
)
|
|
from torch.testing._internal.common_utils import run_tests, TestCase
|
|
from torch.utils import _pytree as pytree
|
|
|
|
|
|
# following are failing with regular torch.export.export
|
|
export_failures = {
|
|
xfail("allclose"),
|
|
xfail("combinations"),
|
|
xfail("corrcoef"),
|
|
xfail("cov"),
|
|
xfail("equal"),
|
|
xfail("linalg.lstsq"),
|
|
xfail("linalg.lstsq", "grad_oriented"),
|
|
xfail("nn.functional.ctc_loss"),
|
|
xfail("nn.functional.gaussian_nll_loss"),
|
|
xfail("sparse.sampled_addmm"),
|
|
xfail("tensor_split"),
|
|
}
|
|
|
|
# following are failing fake export on cuda device
|
|
fake_export_failures = {
|
|
xfail("geqrf"),
|
|
xfail("histogram"),
|
|
xfail("masked.amax"),
|
|
xfail("masked.amin"),
|
|
xfail("masked.argmax"),
|
|
xfail("masked.argmin"),
|
|
xfail("masked.logaddexp"),
|
|
xfail("masked.logsumexp"),
|
|
xfail("masked.mean"),
|
|
xfail("masked.prod"),
|
|
xfail("masked.std"),
|
|
xfail("masked.sum"),
|
|
xfail("masked.var"),
|
|
xfail("to_sparse"),
|
|
# cannot xfail as it is passing for cpu-only build
|
|
skip("nn.functional.grid_sample"),
|
|
skip("nn.functional.conv2d"),
|
|
skip("nn.functional.scaled_dot_product_attention"),
|
|
}
|
|
|
|
fake_decomposition_failures = {
|
|
xfail("linalg.matrix_rank"),
|
|
xfail("nn.functional.binary_cross_entropy_with_logits"),
|
|
xfail("nn.functional.instance_norm"),
|
|
xfail("nn.functional.multi_margin_loss"),
|
|
xfail("repeat_interleave"),
|
|
xfail("take"),
|
|
}
|
|
|
|
|
|
def _test_export_helper(self, dtype, op):
|
|
sample_inputs_itr = op.sample_inputs("cpu", dtype, requires_grad=False)
|
|
|
|
mode = FakeTensorMode(allow_non_fake_inputs=True)
|
|
converter = mode.fake_tensor_converter
|
|
# intentionally avoid cuda:0 to flush out some bugs
|
|
target_device = "cuda:1"
|
|
|
|
def to_fake_device(x):
|
|
x = converter.from_real_tensor(mode, x)
|
|
x.fake_device = torch.device(target_device)
|
|
return x
|
|
|
|
# Limit to first 100 inputs so tests don't take too long
|
|
for sample_input in itertools.islice(sample_inputs_itr, 100):
|
|
args = tuple([sample_input.input] + list(sample_input.args))
|
|
kwargs = sample_input.kwargs
|
|
|
|
# hack to skip non-tensor in args, as export doesn't support it
|
|
if any(not isinstance(arg, torch.Tensor) for arg in args):
|
|
continue
|
|
|
|
if "device" in kwargs:
|
|
kwargs["device"] = target_device
|
|
|
|
with mode:
|
|
args, kwargs = pytree.tree_map_only(
|
|
torch.Tensor, to_fake_device, (args, kwargs)
|
|
)
|
|
|
|
class Module(torch.nn.Module):
|
|
def forward(self, *args):
|
|
return op.op(*args, **kwargs)
|
|
|
|
m = Module()
|
|
|
|
ep = torch.export.export(m, args)
|
|
|
|
for node in ep.graph.nodes:
|
|
if node.op == "call_function":
|
|
fake_tensor = node.meta.get("val", None)
|
|
if isinstance(fake_tensor, FakeTensor):
|
|
self.assertEqual(
|
|
fake_tensor.device, torch.device(target_device)
|
|
)
|
|
|
|
|
|
class TestExportOpInfo(TestCase):
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps(
|
|
"TestExportOpInfo", "test_fake_export", export_failures | fake_export_failures
|
|
)
|
|
def test_fake_export(self, device, dtype, op):
|
|
_test_export_helper(self, dtype, op)
|
|
|
|
@unittest.skipIf(not torch.backends.cuda.is_built(), "requires CUDA build")
|
|
def test_preserve_original_behavior(self):
|
|
def cuda_calls_behavior_unchanged():
|
|
cpu_x = torch.randn(2)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Found no NVIDIA driver on your system."
|
|
):
|
|
cuda_x = cpu_x.to("cuda")
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Found no NVIDIA driver on your system."
|
|
):
|
|
torch.randn(2, device="cuda")
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Found no NVIDIA driver on your system."
|
|
):
|
|
torch.cuda.get_device_capability()
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Found no NVIDIA driver on your system."
|
|
):
|
|
torch.cuda.set_device(1)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "Found no NVIDIA driver on your system."
|
|
):
|
|
torch.cuda.current_device()
|
|
|
|
self.assertEqual(torch.cuda.is_available(), False)
|
|
self.assertEqual(torch.cuda.device_count(), 0)
|
|
|
|
cuda_calls_behavior_unchanged()
|
|
|
|
cpu_x = torch.randn(2)
|
|
with FakeTensorMode(allow_non_fake_inputs=True) as mode:
|
|
cuda_x = mode.from_tensor(cpu_x)
|
|
cuda_x.fake_device = torch.device("cuda")
|
|
cuda_y = cuda_x + cuda_x
|
|
self.assertEqual(cuda_y.device.type, "cuda")
|
|
|
|
# should fail again after exiting the fake mode, with the identical error message
|
|
cuda_calls_behavior_unchanged()
|
|
|
|
|
|
instantiate_device_type_tests(TestExportOpInfo, globals(), only_for="cpu")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|