mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Fixes https://github.com/pytorch/pytorch/issues/84365 and more This PR addresses not only the issue above, but the entire family of issues related to `torch._C.Value.type()` parsing when `scalarType()` or `dtype()` is not available. This issue exists before `JitScalarType` was introduced, but the new implementation refactored the bug in because the new api `from_name` and `from_dtype` requires parsing `torch._C.Value.type()` to get proper inputs, which is exactly the root cause for this family of bugs. Therefore `from_name` and `from_dtype` must be called when the implementor knows the `name` and `dtype` without parsing a `torch._C.Value`. To handle the corner cases hidden within `torch._C.Value`, a new `from_value` API was introduced and it should be used in favor of the former ones for most cases. The new API is safer and doesn't require type parsing from user, triggering JIT asserts in the core of pytorch. Although CI is passing for all tests, please review carefully all symbolics/helpers refactoring to make sure the meaning/intetion of the old call are not changed in the new call Pull Request resolved: https://github.com/pytorch/pytorch/pull/87245 Approved by: https://github.com/justinchuby, https://github.com/BowenBao
1775 lines
59 KiB
Python
1775 lines
59 KiB
Python
from __future__ import annotations
|
|
|
|
import functools
|
|
import inspect
|
|
import sys
|
|
import typing
|
|
import warnings
|
|
from typing import Any, Callable, List, NoReturn, Optional, Sequence, Set, Tuple, Union
|
|
|
|
from typing_extensions import Literal
|
|
|
|
import torch
|
|
import torch._C._onnx as _C_onnx
|
|
from torch import _C
|
|
|
|
# Monkey-patch graph manipulation methods on Graph, used for the ONNX symbolics
|
|
from torch.onnx import ( # noqa: F401
|
|
_constants,
|
|
_deprecation,
|
|
_patch_torch,
|
|
_type_utils,
|
|
errors,
|
|
)
|
|
from torch.onnx._globals import GLOBALS
|
|
from torch.onnx._internal import _beartype, jit_utils
|
|
from torch.types import Number
|
|
|
|
__all__ = [
|
|
"args_have_same_dtype",
|
|
"cast_pytorch_to_onnx",
|
|
"check_training_mode",
|
|
"dequantize_helper",
|
|
"is_caffe2_aten_fallback",
|
|
"is_complex_value",
|
|
"parse_args",
|
|
"pytorch_name_to_type",
|
|
"quantize_helper",
|
|
"quantized_args",
|
|
"requantize_bias_helper",
|
|
"scalar_name_to_pytorch",
|
|
"scalar_type_to_onnx",
|
|
"scalar_type_to_pytorch_type",
|
|
]
|
|
|
|
# ---------------------------------------------------------------------------------
|
|
# Helper functions
|
|
# ---------------------------------------------------------------------------------
|
|
|
|
_ValueDescriptor = Literal[
|
|
"v",
|
|
"i",
|
|
"is",
|
|
"f",
|
|
"fs",
|
|
"b",
|
|
"s",
|
|
"t",
|
|
"none",
|
|
]
|
|
|
|
|
|
@_beartype.beartype
|
|
def _parse_arg(
|
|
value,
|
|
desc: _ValueDescriptor,
|
|
arg_name: Optional[str] = None,
|
|
node_name: Optional[str] = None,
|
|
):
|
|
if desc == "none":
|
|
return value
|
|
if desc == "v" or not _is_value(value):
|
|
return value
|
|
|
|
node = value.node()
|
|
if node.mustBeNone():
|
|
return None
|
|
if node.kind() == "onnx::Constant":
|
|
node_val = _node_get(node, "value")
|
|
if desc == "i":
|
|
return int(node_val)
|
|
elif desc == "f":
|
|
return float(node_val)
|
|
elif desc == "b":
|
|
return bool(node_val)
|
|
elif desc == "s":
|
|
return str(node_val)
|
|
elif desc == "t":
|
|
return node_val
|
|
elif desc == "is":
|
|
return [int(v) for v in node_val]
|
|
elif desc == "fs":
|
|
return [float(v) for v in node_val]
|
|
else:
|
|
raise errors.SymbolicValueError(
|
|
f"ONNX symbolic does not understand the Constant node '{node}' "
|
|
f"specified with descriptor '{desc}'.",
|
|
value,
|
|
)
|
|
elif node.kind() == "prim::ListConstruct":
|
|
if desc == "is":
|
|
for v in node.inputs():
|
|
element_node = v.node()
|
|
if element_node.kind() != "onnx::Constant":
|
|
raise errors.SymbolicValueError(
|
|
f"Failed to export a node '{element_node}' "
|
|
f"(in list node {node}) "
|
|
f"because it is not constant. "
|
|
f"Please try to make things (e.g. kernel sizes) static if possible.",
|
|
value,
|
|
)
|
|
return [int(_node_get(v.node(), "value")) for v in value.node().inputs()]
|
|
else:
|
|
raise errors.SymbolicValueError(
|
|
f"ONNX symbolic does not know how to unpack the ListConstruct node that "
|
|
f"is not a list of integers: '{node}'",
|
|
value,
|
|
)
|
|
|
|
if arg_name is None or node_name is None:
|
|
raise errors.SymbolicValueError(
|
|
f"Expected node type 'onnx::Constant', got '{node.kind()}'.",
|
|
value,
|
|
)
|
|
|
|
raise errors.SymbolicValueError(
|
|
"Expected node type 'onnx::Constant' "
|
|
f"for argument '{arg_name}' of node '{node_name}', got '{node.kind()}'.",
|
|
value,
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _node_get(node: _C.Node, key: str):
|
|
"""Gets attributes of a node which is polymorphic over return type."""
|
|
assert isinstance(node, _C.Node)
|
|
sel = node.kindOf(key)
|
|
return getattr(node, sel)(key)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_onnx_constant(value: _C.Value):
|
|
"""Whether a Value is an ONNX constant."""
|
|
return value.node().kind() == "onnx::Constant"
|
|
|
|
|
|
@_beartype.beartype
|
|
def _maybe_get_const(
|
|
value: Optional[Union[_C.Value, torch.Tensor, Number, Sequence]],
|
|
descriptor: _ValueDescriptor,
|
|
):
|
|
# NOTE: prim::Constant at this stage usually means something not compatible in ONNX,
|
|
# otherwise it'd be converted to onnx::Constant
|
|
# TODO(justinchuby): Replace insinstance with _is_value once we figure out mypy
|
|
if isinstance(value, _C.Value) and _is_onnx_constant(value):
|
|
return _parse_arg(value, descriptor)
|
|
return value
|
|
|
|
|
|
@_beartype.beartype
|
|
def _maybe_get_scalar(value):
|
|
value_t = _maybe_get_const(value, "t")
|
|
if isinstance(value_t, torch.Tensor) and value_t.shape == ():
|
|
return value_t
|
|
return value
|
|
|
|
|
|
@_beartype.beartype
|
|
def _get_const(value, desc, arg_name):
|
|
if not _is_constant(value):
|
|
raise errors.SymbolicValueError(
|
|
f"ONNX symbolic expected a constant value of the '{arg_name}' argument, "
|
|
f"got '{value}'",
|
|
value,
|
|
)
|
|
return _parse_arg(value, desc)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _unpack_list(list_value: _C.Value) -> List[_C.Value]:
|
|
list_node = list_value.node()
|
|
if list_node.kind() != "prim::ListConstruct":
|
|
raise errors.SymbolicValueError(
|
|
f"ONNX symbolic expected node type prim::ListConstruct, "
|
|
f"got '{list_node}'.",
|
|
list_value,
|
|
)
|
|
return list(list_node.inputs())
|
|
|
|
|
|
@_beartype.beartype
|
|
def _unpack_tuple(tuple_value: _C.Value) -> Tuple[_C.Value, ...]:
|
|
tuple_node = tuple_value.node()
|
|
if not _is_tuple_construct(tuple_value):
|
|
raise errors.SymbolicValueError(
|
|
f"ONNX symbolic expected node type 'prim::TupleConstruct', "
|
|
f"got '{tuple_node.kind()}'.",
|
|
tuple_value,
|
|
)
|
|
return tuple(tuple_node.inputs())
|
|
|
|
|
|
@_beartype.beartype
|
|
def _unpack_quantized_tensor(tuple_value: _C.Value) -> Tuple[_C.Value, ...]:
|
|
"""Unpacks a quantized tensor into a tuple of tensor and scale/zero_point.
|
|
Args:
|
|
tuple_value: A tuple of tensor, scale, zero_point, and optionally axis.
|
|
Returns:
|
|
A tuple of tensor, scale, zero_point, and optionally axis.
|
|
"""
|
|
tuple_node = tuple_value.node()
|
|
# A quantized tensor is represented as tuple of the form (tensor, scale, zero_point, <axis>)
|
|
if not _is_tuple_construct(tuple_value):
|
|
raise errors.SymbolicValueError(
|
|
f"ONNX symbolic expected the output of `{tuple_node}` to be a quantized "
|
|
f"tensor. Is this likely due to missing support for quantized "
|
|
f"`{tuple_node.kind()}`. Please create an issue on {_constants.PYTORCH_GITHUB_ISSUES_URL}",
|
|
tuple_value,
|
|
)
|
|
unpacked = tuple(tuple_node.inputs())
|
|
assert len(unpacked) == 3 or len(unpacked) == 4
|
|
return unpacked
|
|
|
|
|
|
# Check if list_value is output from prim::ListConstruct
|
|
# This is usually called before _unpack_list to ensure the list can be unpacked.
|
|
@_beartype.beartype
|
|
def _is_packed_list(list_value: _C.Value) -> bool:
|
|
return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct"
|
|
|
|
|
|
@_beartype.beartype
|
|
def parse_args(*arg_descriptors: _ValueDescriptor):
|
|
"""A decorator which converts args from torch._C.Value to built-in types.
|
|
|
|
For example:
|
|
|
|
```
|
|
@parse_args('v', 'i', 'fs')
|
|
foo(g, a, b, c):
|
|
assert isinstance(a, torch._C.Value)
|
|
assert isinstance(b, int)
|
|
assert isinstance(c, list)
|
|
assert isinstance(c[0], float)
|
|
```
|
|
|
|
Args:
|
|
arg_descriptors: list of str, where each element is
|
|
a string that specifies the type to convert to. Valid descriptors:
|
|
"v": no conversion, keep torch._C.Value.
|
|
"i": int
|
|
"is": list of int
|
|
"f": float
|
|
"fs": list of float
|
|
"b": bool
|
|
"s": str
|
|
"t": torch.Tensor
|
|
"none": the variable is unused
|
|
"""
|
|
|
|
def decorator(fn):
|
|
fn._arg_descriptors = arg_descriptors
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(g, *args, **kwargs):
|
|
# some args may be optional, so the length may be smaller
|
|
FILE_BUG_MSG = (
|
|
"If you believe this is not due to custom symbolic implementation within your code or "
|
|
"an external library, please file an issue at "
|
|
"https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml to report this bug."
|
|
)
|
|
assert len(arg_descriptors) >= len(args), (
|
|
f"A mismatch between the number of arguments ({len(args)}) and "
|
|
f"their descriptors ({len(arg_descriptors)}) was found at symbolic function '{fn.__name__}'. "
|
|
f"{FILE_BUG_MSG}"
|
|
)
|
|
|
|
try:
|
|
sig = inspect.signature(fn)
|
|
arg_names = list(sig.parameters.keys())[1:]
|
|
fn_name = fn.__name__
|
|
except Exception:
|
|
# FIXME(justinchuby): Avoid catching Exception.
|
|
# Catch a more specific exception instead.
|
|
arg_names = [None] * len(args) # type: ignore[list-item]
|
|
fn_name = None
|
|
args = [
|
|
_parse_arg(arg, arg_desc, arg_name, fn_name) # type: ignore[assignment]
|
|
for arg, arg_desc, arg_name in zip(args, arg_descriptors, arg_names)
|
|
]
|
|
# only support _outputs in kwargs
|
|
assert len(kwargs) <= 1, (
|
|
f"Symbolic function {fn.__name__}'s '**kwargs' can contain a single "
|
|
f"key/value entry. "
|
|
f"{FILE_BUG_MSG}"
|
|
)
|
|
|
|
if len(kwargs) == 1:
|
|
assert "_outputs" in kwargs, (
|
|
f"Symbolic function {fn.__name__}'s '**kwargs' can only contain "
|
|
f"'_outputs' key at '**kwargs'. "
|
|
f"{FILE_BUG_MSG}"
|
|
)
|
|
return fn(g, *args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
|
|
@_beartype.beartype
|
|
def quantized_args(
|
|
*arg_q_descriptors: bool,
|
|
scale: Optional[float] = None,
|
|
zero_point: Optional[int] = None,
|
|
):
|
|
"""A decorator which extends support for quantized version of the base operator.
|
|
Quantization is detected by examining the arguments that are annotated by
|
|
`arg_q_descriptors`.
|
|
|
|
If quantization is detected, the base operator symbolic function will be wrapped with
|
|
argument de-quantization and output quantization.
|
|
|
|
Otherwise, only the base symbolic function will be invoked.
|
|
|
|
For example:
|
|
|
|
```
|
|
@quantized_args(True, False)
|
|
def foo(g, x, y):
|
|
return x + y
|
|
```
|
|
|
|
is equivalent to
|
|
|
|
```
|
|
def q_foo(g, x, y):
|
|
if is_quantized_tensor(x):
|
|
x = dequantize(x)
|
|
out = foo(g, x, y)
|
|
return quantize(out)
|
|
else:
|
|
return foo(g, x, y)
|
|
```
|
|
|
|
Args:
|
|
arg_q_descriptors: A sequence of bool, where each element represents if the
|
|
argument is QTensor for quantized version of this operator. It defaults
|
|
to False for unspecified (variable length) arguments.
|
|
scale: Quantized output scale. If None, derive from
|
|
the first quantized input scale.
|
|
zero_point: Quantized output zero point. If None,
|
|
derive from the first quantized input zero point.
|
|
"""
|
|
|
|
def decorator(fn):
|
|
@functools.wraps(fn)
|
|
def wrapper(g, *args, **kwargs):
|
|
nonlocal scale
|
|
nonlocal zero_point
|
|
if scale is not None:
|
|
_scale = g.op("Constant", value_t=torch.tensor(scale))
|
|
else:
|
|
_scale = None
|
|
if zero_point is not None:
|
|
_zero_point = g.op("Constant", value_t=torch.tensor(zero_point))
|
|
else:
|
|
_zero_point = None
|
|
|
|
# Support variable length arguments by marking unspecified ones as non-quantized
|
|
arg_q_descriptors_extended = arg_q_descriptors + (False,) * (
|
|
len(args) - len(arg_q_descriptors)
|
|
)
|
|
descriptor_args = tuple(zip(arg_q_descriptors_extended, args))
|
|
|
|
# Run regular symbolic function if none of the argument is QTensor.
|
|
if not any(
|
|
(descriptor and _is_value(arg) and _is_tuple_construct(arg))
|
|
for descriptor, arg in descriptor_args
|
|
):
|
|
return fn(g, *args, **kwargs)
|
|
|
|
# Dequantize arguments that are quantized
|
|
non_quantized_args = []
|
|
for descriptor, arg in descriptor_args:
|
|
if descriptor and _is_value(arg) and _is_tuple_construct(arg):
|
|
# Quantized arg is a tuple of (value, scale, zero_point)
|
|
dequantized_arg, arg_scale, arg_zero_point, _ = dequantize_helper(
|
|
g, arg
|
|
)
|
|
non_quantized_args.append(dequantized_arg)
|
|
# Set scale and zero_point to the first quantized input if not already set
|
|
if _scale is None:
|
|
_scale = arg_scale
|
|
if _zero_point is None:
|
|
_zero_point = arg_zero_point
|
|
else:
|
|
# Non-quantized arg
|
|
non_quantized_args.append(arg)
|
|
# TODO(justinchuby): Only single output is supported for now. We may want to
|
|
# support multiple outputs in the future.
|
|
output = fn(g, *non_quantized_args, **kwargs)
|
|
|
|
assert _scale is not None, "Bug: Scale must be set for quantized operator"
|
|
assert (
|
|
_zero_point is not None
|
|
), "Bug: Zero point must be set for quantized operator"
|
|
|
|
return quantize_helper(g, output, _scale, _zero_point)
|
|
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
|
|
@_beartype.beartype
|
|
def _scalar(x: Any) -> Optional[Number]:
|
|
"""Convert a scalar tensor into a Python value."""
|
|
if isinstance(x, torch.Tensor) and x.shape == ():
|
|
return x.item()
|
|
return None
|
|
|
|
|
|
@_beartype.beartype
|
|
def _if_scalar_type_as(self, tensor):
|
|
"""
|
|
Convert self into the same type of tensor, as necessary.
|
|
We only support implicit casting for scalars, so we never
|
|
actually need to insert an ONNX cast operator here; just
|
|
fix up the scalar.
|
|
"""
|
|
if isinstance(self, _C.Value):
|
|
return self
|
|
|
|
scalar_type = _type_utils.JitScalarType.from_value(
|
|
tensor, _type_utils.JitScalarType.UNDEFINED
|
|
)
|
|
if scalar_type != _type_utils.JitScalarType.UNDEFINED:
|
|
ty = scalar_type.scalar_name().lower()
|
|
return getattr(self, ty)()
|
|
return self
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_none(x: _C.Value) -> bool:
|
|
return x.node().mustBeNone()
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_value(x: Any) -> bool:
|
|
return isinstance(x, _C.Value)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_constant(value: Any) -> bool:
|
|
return not _is_value(value) or value.node().kind() in {
|
|
"onnx::Constant",
|
|
"prim::Constant",
|
|
}
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_tensor(x: _C.Value) -> bool:
|
|
return x.type().isSubtypeOf(_C.TensorType.get())
|
|
|
|
|
|
# Note: _C.JitType is not exposed to Python and cannot be checked in runtime.
|
|
def _as_list_type(jit_type: _C.JitType) -> Optional[_C.ListType]:
|
|
if isinstance(jit_type, _C.ListType):
|
|
return jit_type
|
|
return None
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_list(x: _C.Value) -> bool:
|
|
return _as_list_type(x.type()) is not None
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_tensor_list(x: _C.Value) -> bool:
|
|
x_type = _as_list_type(x.type())
|
|
if x_type is None:
|
|
return False
|
|
return isinstance(x_type.getElementType(), _C.TensorType)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_scalar_list(x: _C.Value) -> bool:
|
|
"""Checks if x is a scalar list, for example: List[float], List[int].
|
|
|
|
Besides checking the type is ListType, we also check if the data type is
|
|
a valid ONNX data type.
|
|
"""
|
|
x_type = _as_list_type(x.type())
|
|
if x_type is None:
|
|
return False
|
|
scalar_type = _type_utils.JitScalarType.from_value(x)
|
|
return scalar_type.onnx_compatible()
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_tuple_construct(x: _C.Value) -> bool:
|
|
return x.node().kind() == "prim::TupleConstruct"
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_complex_value(x: _C.Value) -> bool:
|
|
assert _is_value(x)
|
|
return _type_utils.JitScalarType.from_value(
|
|
x, _type_utils.JitScalarType.UNDEFINED
|
|
) in {
|
|
_type_utils.JitScalarType.COMPLEX32,
|
|
_type_utils.JitScalarType.COMPLEX64,
|
|
_type_utils.JitScalarType.COMPLEX128,
|
|
}
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_caffe2_aten_fallback() -> bool:
|
|
return (
|
|
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
|
|
and _C_onnx._CAFFE2_ATEN_FALLBACK
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _get_tensor_rank(x: _C.Value) -> Optional[int]:
|
|
if not _is_tensor(x) or x.type() is None:
|
|
return None
|
|
x_type = x.type()
|
|
x_type = typing.cast(_C.TensorType, x_type)
|
|
return x_type.dim()
|
|
|
|
|
|
@_beartype.beartype
|
|
def _get_tensor_sizes(x: _C.Value, allow_nonstatic: bool = True):
|
|
if not _is_tensor(x) or x.type() is None:
|
|
return None
|
|
x_type = x.type()
|
|
x_type = typing.cast(_C.TensorType, x_type)
|
|
if allow_nonstatic:
|
|
# Each individual symbol is returned as None.
|
|
# e.g. [1, "a", "b"] -> [1, None, None]
|
|
return x_type.varyingSizes()
|
|
# returns None, if exists any symbol in sizes.
|
|
# e.g. [1, "a", "b"] -> None
|
|
return x_type.sizes()
|
|
|
|
|
|
@_beartype.beartype
|
|
def _get_tensor_dim_size(x: _C.Value, dim: int) -> Optional[int]:
|
|
sizes = _get_tensor_sizes(x)
|
|
return sizes[dim] if sizes else None
|
|
|
|
|
|
@_beartype.beartype
|
|
def _get_dim_for_cross(x: _C.Value, dim: Optional[int]):
|
|
if dim == -1:
|
|
tensor_rank = _get_tensor_rank(x)
|
|
assert tensor_rank is not None
|
|
return dim + tensor_rank
|
|
# If dim is not given, it defaults to the first dimension found with the size 3
|
|
if dim is None:
|
|
sizes = _get_tensor_sizes(x)
|
|
assert sizes is not None
|
|
for index, size in enumerate(sizes):
|
|
if size is not None and size == 3:
|
|
return index
|
|
return dim
|
|
|
|
|
|
@_beartype.beartype
|
|
def _unimplemented(op: str, msg: str, value: Optional[_C.Value] = None) -> None:
|
|
# For BC reasons, the behavior for Caffe2 does not raise exception for unimplemented operators
|
|
if _C_onnx._CAFFE2_ATEN_FALLBACK:
|
|
warnings.warn(f"ONNX export failed on {op} because {msg} not supported")
|
|
elif GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX:
|
|
_onnx_unsupported(f"{op}, {msg}", value)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _onnx_unsupported(op_name: str, value: Optional[_C.Value] = None) -> NoReturn:
|
|
message = (
|
|
f"Unsupported: ONNX export of operator {op_name}. "
|
|
f"Please feel free to request support or submit a pull request "
|
|
f"on PyTorch GitHub: {_constants.PYTORCH_GITHUB_ISSUES_URL}"
|
|
)
|
|
if isinstance(value, _C.Value):
|
|
raise errors.SymbolicValueError(
|
|
message,
|
|
value,
|
|
)
|
|
raise errors.OnnxExporterError(message)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _onnx_opset_unsupported(
|
|
op_name: str,
|
|
current_opset: int,
|
|
supported_opset: int,
|
|
value: Optional[_C.Value] = None,
|
|
) -> NoReturn:
|
|
message = (
|
|
f"Unsupported: ONNX export of {op_name} in opset {current_opset}. "
|
|
f"Please try opset version {supported_opset}."
|
|
)
|
|
if isinstance(value, _C.Value):
|
|
raise errors.SymbolicValueError(
|
|
message,
|
|
value,
|
|
)
|
|
raise errors.OnnxExporterError(message)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _onnx_opset_unsupported_detailed(
|
|
op_name: str,
|
|
current_opset: int,
|
|
supported_opset: int,
|
|
reason: str,
|
|
value: Optional[_C.Value] = None,
|
|
) -> NoReturn:
|
|
message = (
|
|
f"Unsupported: ONNX export of {op_name} in "
|
|
f"opset {current_opset}. {reason}. Please try opset version {supported_opset}."
|
|
)
|
|
if isinstance(value, _C.Value):
|
|
raise errors.SymbolicValueError(
|
|
message,
|
|
value,
|
|
)
|
|
raise errors.OnnxExporterError(message)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _block_list_in_opset(name: str):
|
|
def symbolic_fn(*args, **kwargs):
|
|
raise errors.OnnxExporterError(
|
|
f"ONNX export failed on {name}, which is not implemented for opset "
|
|
f"{GLOBALS.export_onnx_opset_version}. "
|
|
"Try exporting with other opset versions."
|
|
)
|
|
|
|
return symbolic_fn
|
|
|
|
|
|
@_beartype.beartype
|
|
def _try_get_scalar_type(*args) -> Optional[_type_utils.JitScalarType]:
|
|
for arg in args:
|
|
scalar_type = _type_utils.JitScalarType.from_value(
|
|
arg, _type_utils.JitScalarType.UNDEFINED
|
|
)
|
|
if scalar_type != _type_utils.JitScalarType.UNDEFINED:
|
|
return scalar_type
|
|
return None
|
|
|
|
|
|
@_beartype.beartype
|
|
def _select_helper(g: jit_utils.GraphContext, self, dim, index, apply_reshape=True):
|
|
index_const = _maybe_get_scalar(index)
|
|
index_dim = _get_tensor_rank(index)
|
|
if not _is_value(index_const):
|
|
# Index is a constant scalar. Make it a size 1 constant tensor.
|
|
index = g.op("Constant", value_t=torch.LongTensor([index_const]))
|
|
elif index_dim is not None and apply_reshape:
|
|
if index_dim == 0:
|
|
# Index is a scalar. Reshape it to a size 1 tensor.
|
|
index = _reshape_helper(
|
|
g, index, g.op("Constant", value_t=torch.LongTensor([1]))
|
|
)
|
|
|
|
index_scalar_type = _type_utils.JitScalarType.from_value(
|
|
index, _type_utils.JitScalarType.UNDEFINED
|
|
)
|
|
if index_scalar_type not in {
|
|
_type_utils.JitScalarType.INT64,
|
|
_type_utils.JitScalarType.INT,
|
|
}:
|
|
index = g.op("Cast", index, to_i=_C_onnx.TensorProtoDataType.INT64)
|
|
return g.op("Gather", self, index, axis_i=dim)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _slice_helper(
|
|
g: jit_utils.GraphContext,
|
|
input,
|
|
axes,
|
|
starts,
|
|
ends,
|
|
steps=None,
|
|
dynamic_slice=False,
|
|
):
|
|
if g.opset <= 9:
|
|
from torch.onnx.symbolic_opset9 import _slice as _slice9
|
|
|
|
return _slice9(g, input, axes, starts, ends)
|
|
else:
|
|
from torch.onnx.symbolic_opset10 import _slice as _slice10
|
|
|
|
return _slice10(g, input, axes, starts, ends, steps, dynamic_slice)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_fp(value) -> bool:
|
|
return _type_utils.JitScalarType.from_value(
|
|
value, _type_utils.JitScalarType.UNDEFINED
|
|
) in {
|
|
_type_utils.JitScalarType.FLOAT,
|
|
_type_utils.JitScalarType.DOUBLE,
|
|
_type_utils.JitScalarType.HALF,
|
|
_type_utils.JitScalarType.BFLOAT16,
|
|
}
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_bool(value) -> bool:
|
|
return _type_utils.JitScalarType.from_value(
|
|
value, _type_utils.JitScalarType.UNDEFINED
|
|
) in {_type_utils.JitScalarType.BOOL}
|
|
|
|
|
|
@_beartype.beartype
|
|
def _generate_wrapped_number(g: jit_utils.GraphContext, scalar):
|
|
"""Creates a wrapped number based on https://github.com/pytorch/pytorch/issues/9515.
|
|
|
|
A Tensor is a considered a "wrapped number" if it is
|
|
auto-wrapped from a C++ or Python number type. Integer types are
|
|
wrapped as 0-dim int64 tensors and floating-point types are
|
|
wrapped as 0-dim double tensors.
|
|
|
|
The input to this function is constant value. If the data type
|
|
is a floating point type, it is converted to a 0-dim double
|
|
tensor, else it is converted to a 0-dim tensor of its original type
|
|
"""
|
|
assert not isinstance(scalar, torch.Tensor)
|
|
if isinstance(scalar, float):
|
|
return g.op("Constant", value_t=torch.tensor(scalar, dtype=torch.double))
|
|
return g.op("Constant", value_t=torch.tensor(scalar))
|
|
|
|
|
|
@_beartype.beartype
|
|
def _sort_helper(g: jit_utils.GraphContext, input, dim, decending=True, out=None):
|
|
if out is not None:
|
|
_unimplemented("Sort", "Out parameter is not supported")
|
|
shape_ = g.op("Shape", input)
|
|
dim_size_ = g.op(
|
|
"Gather",
|
|
shape_,
|
|
g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64)),
|
|
)
|
|
if g.opset <= 10:
|
|
if not decending:
|
|
_unimplemented("Sort", "Ascending is not supported")
|
|
return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2)
|
|
else:
|
|
return g.op(
|
|
"TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _topk_helper(
|
|
g: jit_utils.GraphContext, input, k, dim, largest=True, sorted=False, out=None
|
|
):
|
|
if out is not None:
|
|
_unimplemented("TopK", "Out parameter is not supported")
|
|
if not _is_value(k):
|
|
k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64))
|
|
else:
|
|
k = _reshape_helper(g, k, g.op("Constant", value_t=torch.tensor([1])))
|
|
if _try_get_scalar_type(k) != _type_utils.JitScalarType.INT64:
|
|
k = g.op("Cast", k, to_i=_C_onnx.TensorProtoDataType.INT64)
|
|
if g.opset <= 10:
|
|
if not largest:
|
|
_unimplemented("TopK", "Ascending is not supported")
|
|
return g.op("TopK", input, k, axis_i=dim, outputs=2)
|
|
else:
|
|
return g.op(
|
|
"TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _lt_helper(g: jit_utils.GraphContext, input, other):
|
|
if g.opset <= 8:
|
|
from torch.onnx.symbolic_opset8 import lt as _lt8
|
|
|
|
return _lt8(g, input, other)
|
|
else:
|
|
from torch.onnx.symbolic_opset9 import lt as _lt9
|
|
|
|
return _lt9(g, input, other)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _interpolate_warning(interpolate_mode):
|
|
onnx_op = (
|
|
"onnx:Resize" if GLOBALS.export_onnx_opset_version >= 10 else "onnx:Upsample"
|
|
)
|
|
warnings.warn(
|
|
"You are trying to export the model with "
|
|
+ onnx_op
|
|
+ " for ONNX opset version "
|
|
"" + str(GLOBALS.export_onnx_opset_version) + ". "
|
|
"This operator might cause results to not match the expected results by PyTorch.\n"
|
|
"ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. "
|
|
"Attributes to determine how to transform the input were added in onnx:Resize in opset 11 "
|
|
"to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n"
|
|
"We recommend using opset 11 and above for models using this operator."
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _unsqueeze_helper(g: jit_utils.GraphContext, input, axes_i):
|
|
if _is_constant(axes_i[0]):
|
|
if g.opset >= 13:
|
|
axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long))
|
|
return g.op("Unsqueeze", input, axes)
|
|
return g.op("Unsqueeze", input, axes_i=axes_i)
|
|
# Tensor type
|
|
if g.opset < 13:
|
|
raise errors.SymbolicValueError(
|
|
"Opset version must be >= 13 for Unsqueeze with dynamic axes.", input
|
|
)
|
|
return g.op("Unsqueeze", input, axes_i[0])
|
|
|
|
|
|
@_beartype.beartype
|
|
def _squeeze_helper(g: jit_utils.GraphContext, input, axes_i):
|
|
if _is_constant(axes_i[0]):
|
|
if g.opset >= 13:
|
|
axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long))
|
|
return g.op("Squeeze", input, axes)
|
|
return g.op("Squeeze", input, axes_i=axes_i)
|
|
# Tensor type
|
|
if g.opset < 13:
|
|
raise errors.SymbolicValueError(
|
|
"Opset version must be >= 13 for Squeeze with dynamic axes.", input
|
|
)
|
|
axes_t = axes_i[0]
|
|
axes_rank = _get_tensor_rank(axes_t)
|
|
assert axes_rank is not None
|
|
if axes_rank > 1:
|
|
raise errors.SymbolicValueError(
|
|
"For Squeeze axses as input, the axes rank must be one in ONNX spec.", input
|
|
)
|
|
elif axes_rank == 0:
|
|
# The axes is a scalar. Unsqueeze it to a rank 1 tensor.
|
|
axes_t = _unsqueeze_helper(g, axes_t, [0])
|
|
return g.op("Squeeze", input, axes_t)
|
|
return g.op("Squeeze", input, axes_t)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _reducesum_helper(
|
|
g: jit_utils.GraphContext,
|
|
input,
|
|
axes_i=None,
|
|
keepdims_i=1,
|
|
noop_with_empty_axes_i=0,
|
|
):
|
|
keepdims_i = _maybe_get_const(keepdims_i, "i")
|
|
if g.opset >= 13:
|
|
if axes_i:
|
|
if not _is_value(axes_i):
|
|
axes_i = g.op(
|
|
"Constant", value_t=torch.tensor(axes_i, dtype=torch.long)
|
|
)
|
|
return g.op(
|
|
"ReduceSum",
|
|
input,
|
|
axes_i,
|
|
keepdims_i=keepdims_i,
|
|
noop_with_empty_axes_i=noop_with_empty_axes_i,
|
|
)
|
|
return g.op(
|
|
"ReduceSum",
|
|
input,
|
|
keepdims_i=keepdims_i,
|
|
noop_with_empty_axes_i=noop_with_empty_axes_i,
|
|
)
|
|
else:
|
|
return g.op("ReduceSum", input, axes_i=axes_i, keepdims_i=keepdims_i)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _interpolate_size_to_scales(g: jit_utils.GraphContext, input, output_size, dim):
|
|
output_size = _maybe_get_const(output_size, "is")
|
|
if _is_value(output_size):
|
|
offset = 2
|
|
offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32))
|
|
dividend = g.op("Cast", output_size, to_i=_C_onnx.TensorProtoDataType.FLOAT)
|
|
divisor = _slice_helper(
|
|
g, g.op("Shape", input), axes=[0], ends=[sys.maxsize], starts=[offset]
|
|
)
|
|
divisor = g.op("Cast", divisor, to_i=_C_onnx.TensorProtoDataType.FLOAT)
|
|
scale_dims = g.op("Div", dividend, divisor)
|
|
scales = g.op("Concat", offsets, scale_dims, axis_i=0)
|
|
else:
|
|
scales_constant = [
|
|
1.0
|
|
if i < 2
|
|
else float(output_size[-(dim - i)])
|
|
/ float(input.type().sizes()[-(dim - i)])
|
|
for i in range(0, dim)
|
|
]
|
|
scales = g.op(
|
|
"Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32)
|
|
)
|
|
return scales
|
|
|
|
|
|
@_beartype.beartype
|
|
def _interpolate_get_scales_if_available(g: jit_utils.GraphContext, scales):
|
|
available_scales = _maybe_get_const(scales[0], "fs") != -1 and not _is_none(
|
|
scales[0]
|
|
)
|
|
|
|
if not available_scales:
|
|
return None
|
|
|
|
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
|
|
scales_list = g.op(
|
|
"Constant", value_t=torch.tensor(_maybe_get_const(scales[0], "fs"))
|
|
)
|
|
scales = g.op("Concat", offsets, scales_list, axis_i=0)
|
|
return scales
|
|
|
|
|
|
@_beartype.beartype
|
|
def _get_interpolate_attributes(g: jit_utils.GraphContext, mode, args):
|
|
if mode == "nearest":
|
|
align_corners = None
|
|
scales = args[0:]
|
|
else:
|
|
align_corners = args[0]
|
|
scales = args[1:]
|
|
scales = _interpolate_get_scales_if_available(g, scales)
|
|
return scales, align_corners
|
|
|
|
|
|
@_beartype.beartype
|
|
def _interpolate_get_scales(g: jit_utils.GraphContext, scale_factor, dim):
|
|
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
|
|
scale_factor_rank = _get_tensor_rank(scale_factor)
|
|
if isinstance(scale_factor.type(), _C.ListType) or (
|
|
scale_factor_rank is not None and scale_factor_rank > 0
|
|
):
|
|
return g.op("Concat", offsets, scale_factor, axis_i=0)
|
|
else:
|
|
scale_factor = _unsqueeze_helper(g, scale_factor, [0])
|
|
scale_factor = g.op(
|
|
"Cast", scale_factor, to_i=_C_onnx.TensorProtoDataType.FLOAT
|
|
)
|
|
scales = [scale_factor for i in range(dim - 2)]
|
|
scale_factor = g.op("Concat", offsets, *scales, axis_i=0)
|
|
return scale_factor
|
|
|
|
|
|
@_beartype.beartype
|
|
def _interpolate_get_scales_and_mode(
|
|
g: jit_utils.GraphContext, input, size, scale_factor, mode, align_corners
|
|
):
|
|
mode = _maybe_get_const(mode, "s")
|
|
if "linear" in mode:
|
|
mode = "linear"
|
|
if "cubic" in mode:
|
|
mode = "cubic"
|
|
_interpolate_warning(mode)
|
|
|
|
align_corners = _maybe_get_const(align_corners, "b")
|
|
if isinstance(align_corners, bool) and align_corners:
|
|
return _unimplemented("interpolate", "align_corners == True")
|
|
|
|
if not input.type().dim():
|
|
return _unimplemented("interpolate", "missing input shape")
|
|
dim = input.type().dim()
|
|
|
|
if not _is_none(scale_factor):
|
|
scale_factor = _interpolate_get_scales(g, scale_factor, dim)
|
|
elif not _is_none(size):
|
|
if not _is_packed_list(size):
|
|
is_scalar = _maybe_get_const(size, "t").dim() == 0
|
|
if is_scalar:
|
|
size = _unsqueeze_helper(g, size, [0])
|
|
size = [size for i in range(dim - 2)]
|
|
size = g.op("Concat", *size, axis_i=0)
|
|
scale_factor = _interpolate_size_to_scales(g, input, size, dim)
|
|
else:
|
|
return _unimplemented(
|
|
"interpolate", "Both size and scales are None in __interpolate"
|
|
)
|
|
return scale_factor, mode
|
|
|
|
|
|
@_beartype.beartype
|
|
def _argmin_argmax_helper(
|
|
g: jit_utils.GraphContext,
|
|
input: torch._C.Value,
|
|
dim: torch._C.Value,
|
|
keepdim: bool,
|
|
op_name: str,
|
|
):
|
|
def op_wrapper(input, axis_i, keepdims_i):
|
|
if g.opset >= 12:
|
|
return g.op(
|
|
op_name,
|
|
input,
|
|
axis_i=axis_i,
|
|
keepdims_i=keepdims_i,
|
|
select_last_index_i=False,
|
|
)
|
|
return g.op(op_name, input, axis_i=axis_i, keepdims_i=keepdims_i)
|
|
|
|
if _is_none(dim):
|
|
flattened = _reshape_helper(
|
|
g, input, g.op("Constant", value_t=torch.tensor([-1]))
|
|
)
|
|
output = op_wrapper(flattened, axis_i=0, keepdims_i=False)
|
|
if keepdim:
|
|
input_shape = g.op("Shape", input)
|
|
input_shape_shape = g.op("Shape", input_shape)
|
|
new_shape = g.op(
|
|
"ConstantOfShape",
|
|
input_shape_shape,
|
|
value_t=torch.tensor([1], dtype=torch.int64),
|
|
)
|
|
output = g.op("Reshape", output, new_shape)
|
|
return output
|
|
|
|
dim = _parse_arg(dim, "i")
|
|
return op_wrapper(input, axis_i=dim, keepdims_i=keepdim)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _interpolate_helper(name, dim, interpolate_mode):
|
|
@quantized_args(True, False, False)
|
|
def symbolic_fn(g, input, output_size, *args):
|
|
scales, align_corners = _get_interpolate_attributes(g, interpolate_mode, args)
|
|
align_corners = _maybe_get_scalar(align_corners)
|
|
coordinate_transformation_mode = (
|
|
"asymmetric"
|
|
if interpolate_mode == "nearest"
|
|
else "align_corners"
|
|
if align_corners
|
|
else "half_pixel"
|
|
)
|
|
|
|
if scales is None:
|
|
input_size = g.op("Shape", input)
|
|
input_size_beg = _slice_helper(
|
|
g, input_size, axes=[0], ends=[2], starts=[0]
|
|
)
|
|
output_size = g.op(
|
|
"Cast", output_size, to_i=_C_onnx.TensorProtoDataType.INT64
|
|
)
|
|
output_size = g.op("Concat", input_size_beg, output_size, axis_i=0)
|
|
|
|
if g.opset >= 13:
|
|
empty_roi = _optional_input_placeholder_tensor(g)
|
|
empty_scales = _optional_input_placeholder_tensor(g)
|
|
else:
|
|
empty_roi = g.op(
|
|
"Constant", value_t=torch.tensor([], dtype=torch.float32)
|
|
)
|
|
empty_scales = g.op(
|
|
"Constant", value_t=torch.tensor([], dtype=torch.float32)
|
|
)
|
|
|
|
return g.op(
|
|
"Resize",
|
|
input,
|
|
empty_roi,
|
|
empty_scales,
|
|
output_size,
|
|
coordinate_transformation_mode_s=coordinate_transformation_mode,
|
|
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
|
|
mode_s=interpolate_mode, # nearest, linear, or cubic
|
|
nearest_mode_s="floor",
|
|
) # only valid when mode="nearest"
|
|
else:
|
|
if g.opset >= 13:
|
|
empty_roi = _optional_input_placeholder_tensor(g)
|
|
else:
|
|
empty_roi = g.op(
|
|
"Constant", value_t=torch.tensor([], dtype=torch.float32)
|
|
)
|
|
|
|
return g.op(
|
|
"Resize",
|
|
input,
|
|
empty_roi,
|
|
scales,
|
|
coordinate_transformation_mode_s=coordinate_transformation_mode,
|
|
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
|
|
mode_s=interpolate_mode, # nearest, linear, or cubic
|
|
nearest_mode_s="floor",
|
|
) # only valid when mode="nearest"
|
|
|
|
return symbolic_fn
|
|
|
|
|
|
@_beartype.beartype
|
|
def __interpolate_helper(
|
|
g: jit_utils.GraphContext,
|
|
input,
|
|
size,
|
|
scale_factor,
|
|
mode,
|
|
align_corners,
|
|
recompute_scale_factor,
|
|
):
|
|
mode = _maybe_get_const(mode, "s")
|
|
if "linear" in mode:
|
|
mode = "linear"
|
|
if "cubic" in mode:
|
|
mode = "cubic"
|
|
align_corners = _maybe_get_const(align_corners, "b")
|
|
align_corners = False if not isinstance(align_corners, bool) else align_corners
|
|
coordinate_transformation_mode = (
|
|
"asymmetric"
|
|
if mode == "nearest"
|
|
else "align_corners"
|
|
if align_corners
|
|
else "half_pixel"
|
|
)
|
|
|
|
if not _is_none(size):
|
|
input_size = g.op("Shape", input)
|
|
input_size = _slice_helper(g, input_size, axes=[0], ends=[2], starts=[0])
|
|
# in some cases size is not a packed list but size is a scalar
|
|
# We need to also verify that (_maybe_get_const(size, "t").dim() == 0)
|
|
# but this information is not always available. Try to get the dim,
|
|
# and if not assume that it is not a scalar.
|
|
try:
|
|
is_scalar = not _is_packed_list(size) and (
|
|
_maybe_get_const(size, "t").dim() == 0
|
|
)
|
|
except AttributeError:
|
|
is_scalar = not _is_packed_list(size)
|
|
if not is_scalar:
|
|
warnings.warn(
|
|
"Cannot verify if the output_size is a scalar "
|
|
"while exporting interpolate. Assuming that it is not a scalar."
|
|
)
|
|
|
|
if is_scalar:
|
|
rank = _get_tensor_rank(input)
|
|
if rank is None:
|
|
return _unimplemented(
|
|
"interpolate (with a scalar output_size)",
|
|
"missing input shape (try giving an array of output_size values)",
|
|
)
|
|
size = _unsqueeze_helper(g, size, [0])
|
|
size = [size for i in range(rank - 2)]
|
|
size = g.op("Concat", *size, axis_i=0)
|
|
size = g.op("Cast", size, to_i=_C_onnx.TensorProtoDataType.INT64)
|
|
size = g.op("Concat", input_size, size, axis_i=0)
|
|
|
|
if g.opset >= 13:
|
|
empty_roi = _optional_input_placeholder_tensor(g)
|
|
empty_scales = _optional_input_placeholder_tensor(g)
|
|
else:
|
|
empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32))
|
|
empty_scales = g.op(
|
|
"Constant", value_t=torch.tensor([], dtype=torch.float32)
|
|
)
|
|
|
|
return g.op(
|
|
"Resize",
|
|
input,
|
|
empty_roi,
|
|
empty_scales,
|
|
size,
|
|
coordinate_transformation_mode_s=coordinate_transformation_mode,
|
|
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
|
|
mode_s=mode, # nearest, linear, or cubic
|
|
nearest_mode_s="floor",
|
|
)
|
|
else: # if not _is_none(scales)
|
|
rank = _get_tensor_rank(input)
|
|
if rank is None:
|
|
return _unimplemented("interpolate (with scales)", "missing input shape")
|
|
|
|
if g.opset >= 13:
|
|
empty_roi = _optional_input_placeholder_tensor(g)
|
|
else:
|
|
empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32))
|
|
|
|
scales = _interpolate_get_scales(g, scale_factor, rank)
|
|
return g.op(
|
|
"Resize",
|
|
input,
|
|
empty_roi,
|
|
scales,
|
|
coordinate_transformation_mode_s=coordinate_transformation_mode,
|
|
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
|
|
mode_s=mode, # nearest, linear, or cubic
|
|
nearest_mode_s="floor",
|
|
) # only valid when mode="nearest"
|
|
|
|
|
|
@_beartype.beartype
|
|
def _unbind_helper(g: jit_utils.GraphContext, self, dim, _outputs):
|
|
if g.opset < 11:
|
|
from torch.onnx.symbolic_opset9 import unbind
|
|
elif g.opset <= 12:
|
|
from torch.onnx.symbolic_opset11 import unbind # type: ignore[no-redef]
|
|
else:
|
|
from torch.onnx.symbolic_opset13 import unbind # type: ignore[no-redef]
|
|
return unbind(g, self, dim, _outputs)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _scatter_helper(g: jit_utils.GraphContext, self, dim, index, src):
|
|
if g.opset <= 10:
|
|
from torch.onnx.symbolic_opset9 import scatter
|
|
else:
|
|
# for mypy, scatter was imported two lines above
|
|
from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef]
|
|
return scatter(g, self, dim, index, src)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _repeat_interleave_split_helper(g: jit_utils.GraphContext, self, reps, dim):
|
|
if g.opset <= 12:
|
|
split_out = g.op("Split", self, split_i=[1] * reps, axis_i=dim, outputs=reps)
|
|
else:
|
|
from torch.onnx.symbolic_opset13 import split
|
|
|
|
repeats = g.op("Constant", value_t=torch.tensor([1] * reps))
|
|
split_out = split(g, self, repeats, dim, _outputs=reps)
|
|
return split_out if reps > 1 else [split_out]
|
|
|
|
|
|
@_beartype.beartype
|
|
def _arange_cast_helper(
|
|
g: jit_utils.GraphContext, end, start=None, step=None, dtype=None
|
|
) -> Tuple[
|
|
_type_utils.JitScalarType,
|
|
Optional[_C.Value],
|
|
Optional[_C.Value],
|
|
Optional[_C.Value],
|
|
]:
|
|
def _is_all_integral(scalars):
|
|
for scalar in scalars:
|
|
scalar_type = _type_utils.JitScalarType.from_value(
|
|
scalar, _type_utils.JitScalarType.UNDEFINED
|
|
)
|
|
if (
|
|
scalar_type != _type_utils.JitScalarType.INT64
|
|
and scalar_type != _type_utils.JitScalarType.UNDEFINED
|
|
):
|
|
return False
|
|
return True
|
|
|
|
# This logic is based on torch.arange docs. If "dtype" is provided,
|
|
# infer input types from dtype. If not, then check if any of start, stop,
|
|
# or step are floating point, and infer the type from get_default.
|
|
# Otherwise, the dtype is inferred to be torch.int64.
|
|
if dtype is None or (_is_value(dtype) and _is_none(dtype)):
|
|
if _is_all_integral([start, end, step]):
|
|
scalar_type = _type_utils.JitScalarType.INT64
|
|
else:
|
|
scalar_type = _type_utils.JitScalarType.from_dtype(
|
|
torch.get_default_dtype()
|
|
)
|
|
else:
|
|
assert isinstance(dtype, int)
|
|
# TODO(justinchuby): Check if dtype is indeed a int.
|
|
scalar_type = _type_utils.JitScalarType(dtype)
|
|
|
|
start = g.op("Cast", start, to_i=scalar_type.onnx_type()) if start else None
|
|
end = g.op("Cast", end, to_i=scalar_type.onnx_type()) if end else None
|
|
step = g.op("Cast", step, to_i=scalar_type.onnx_type()) if step else None
|
|
return scalar_type, end, start, step
|
|
|
|
|
|
@_beartype.beartype
|
|
def _arange_helper(g: jit_utils.GraphContext, *args):
|
|
if g.opset <= 10:
|
|
from torch.onnx.symbolic_opset9 import arange
|
|
else:
|
|
from torch.onnx.symbolic_opset11 import arange # type: ignore[no-redef]
|
|
return arange(g, *args)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _size_helper(g: jit_utils.GraphContext, self, dim):
|
|
full_shape = g.op("Shape", self)
|
|
from torch.onnx.symbolic_opset9 import select
|
|
|
|
return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _index_fill_reshape_helper(g: jit_utils.GraphContext, self, dim, index):
|
|
# 1. reshape index => [1, ..., 1, dim, 1, ..., 1]
|
|
# 2. expand index => [..., dim, ...], same shape as self except for dim.
|
|
# 3. expand value as well.
|
|
# 4. apply onnx::scatter.
|
|
|
|
from torch.onnx.symbolic_opset9 import expand
|
|
|
|
if g.opset <= 10:
|
|
from torch.onnx.symbolic_opset9 import scatter
|
|
else:
|
|
# for mypy, scatter was imported two lines above
|
|
from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef]
|
|
|
|
if self.type().dim() is None:
|
|
return _unimplemented("index_fill", "input rank not accesible")
|
|
self_dim = self.type().dim()
|
|
dim_value = _parse_arg(dim, "i")
|
|
unsqueezed_index = _unsqueeze_helper(
|
|
g, index, [i for i in range(self_dim) if i != dim_value]
|
|
)
|
|
expanded_index_shape = scatter(
|
|
g, g.op("Shape", self), 0, _unsqueeze_helper(g, dim, [0]), g.op("Shape", index)
|
|
)
|
|
expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None)
|
|
return expanded_index_shape, expanded_index
|
|
|
|
|
|
# By default, when any value in the 'shape' input is equal to zero
|
|
# the corresponding dimension value is copied from the input tensor dynamically.
|
|
# allowzero=1 indicates that if any value in the 'shape' input is set to zero,
|
|
# the zero value is honored, similar to NumPy.
|
|
# allowzero=1 is only supported for opset version >= 14.
|
|
@_beartype.beartype
|
|
def _reshape_helper(g: jit_utils.GraphContext, input, shape, allowzero=0):
|
|
shape = _maybe_get_const(shape, "is")
|
|
if not _is_value(shape):
|
|
shape = g.op("Constant", value_t=torch.LongTensor(shape))
|
|
if g.opset <= 13:
|
|
if allowzero == 1:
|
|
_onnx_opset_unsupported(
|
|
"Reshape with allowzero=1", GLOBALS.export_onnx_opset_version, 14, input
|
|
)
|
|
return g.op("Reshape", input, shape)
|
|
else:
|
|
return g.op("Reshape", input, shape, allowzero_i=allowzero)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _batchnorm_helper(
|
|
g: jit_utils.GraphContext, input, weight, bias, running_mean, running_var
|
|
):
|
|
from torch.onnx.symbolic_opset9 import _var_mean
|
|
|
|
batch_size = _get_tensor_dim_size(input, 0)
|
|
channel_size = _get_tensor_dim_size(input, 1)
|
|
|
|
if weight is None or _is_none(weight):
|
|
if channel_size is None:
|
|
raise errors.SymbolicValueError(
|
|
"Unsupported: ONNX export of batch_norm for unknown channel size.",
|
|
input,
|
|
)
|
|
weight_value = torch.tensor(
|
|
[1.0] * channel_size,
|
|
dtype=_type_utils.JitScalarType.from_value(input).dtype(),
|
|
)
|
|
weight = g.op("Constant", value_t=weight_value)
|
|
if bias is None or _is_none(bias):
|
|
if channel_size is None:
|
|
raise errors.SymbolicValueError(
|
|
"Unsupported: ONNX export of batch_norm for unknown channel size.",
|
|
input,
|
|
)
|
|
bias_value = torch.tensor(
|
|
[0.0] * channel_size,
|
|
dtype=_type_utils.JitScalarType.from_value(input).dtype(),
|
|
)
|
|
bias = g.op("Constant", value_t=bias_value)
|
|
# If track_running_stats is set to False batch statistics are instead used during evaluation time
|
|
if (
|
|
running_mean is None
|
|
or _is_none(running_mean)
|
|
or running_var is None
|
|
or _is_none(running_var)
|
|
):
|
|
assert batch_size is not None and channel_size is not None
|
|
reshape_in = _reshape_helper(
|
|
g,
|
|
input,
|
|
g.op(
|
|
"Constant",
|
|
value_t=torch.tensor([batch_size, channel_size, -1], dtype=torch.int64),
|
|
),
|
|
)
|
|
trans_in = g.op("Transpose", reshape_in, perm_i=[0, 2, 1])
|
|
running_var, running_mean = _var_mean(
|
|
g,
|
|
trans_in,
|
|
g.op("Constant", value_t=torch.tensor([0, 1], dtype=torch.int64)),
|
|
False,
|
|
False,
|
|
)
|
|
return weight, bias, running_mean, running_var
|
|
|
|
|
|
@_beartype.beartype
|
|
def _avgpool_helper(
|
|
tuple_fn: Callable[[Any], Sequence[int]],
|
|
padding: Union[int, Sequence[int]],
|
|
kernel_size,
|
|
stride,
|
|
divisor_override,
|
|
name,
|
|
) -> Tuple[int, ...]:
|
|
if divisor_override and divisor_override.node().kind() != "prim::Constant":
|
|
_unimplemented(name, "divisor_override")
|
|
return tuple(tuple_fn(padding))
|
|
|
|
|
|
@_beartype.beartype
|
|
def check_training_mode(op_train_mode: int, op_name: str) -> None:
|
|
"""Warns the user if the model's training mode and the export mode do not agree."""
|
|
if GLOBALS.training_mode == _C_onnx.TrainingMode.PRESERVE:
|
|
return
|
|
|
|
if op_train_mode:
|
|
op_mode_enum = _C_onnx.TrainingMode.TRAINING
|
|
else:
|
|
op_mode_enum = _C_onnx.TrainingMode.EVAL
|
|
if op_mode_enum == GLOBALS.training_mode:
|
|
# The modes agree. Do nothing
|
|
return
|
|
|
|
op_mode_text = f"train={bool(op_train_mode)}"
|
|
# Setting the model mode could result in op_mode != GLOBALS.training_mode
|
|
# if the model is a FuncModule. In this case we warn the user of
|
|
# the state and export depending on op_mode
|
|
# This is to support use-cases of fixing certain layer weights
|
|
# in training.
|
|
warnings.warn(
|
|
f"ONNX export mode is set to {GLOBALS.training_mode}, but operator '{op_name}' "
|
|
f"is set to {op_mode_text}. Exporting with {op_mode_text}."
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _flatten_helper(g: jit_utils.GraphContext, input, start_dim, end_dim, dim):
|
|
input_size = g.op("Shape", input)
|
|
slice1 = _slice_helper(g, input_size, axes=[0], starts=[0], ends=[start_dim])
|
|
slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long))]
|
|
if end_dim < dim - 1:
|
|
slice3 = _slice_helper(
|
|
g, input_size, axes=[0], starts=[end_dim + 1], ends=[dim]
|
|
)
|
|
slices = [
|
|
slice1,
|
|
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
|
|
slice3,
|
|
]
|
|
|
|
final_shape = g.op("Concat", *slices, axis_i=0)
|
|
from torch.onnx.symbolic_opset9 import _reshape_from_tensor
|
|
|
|
return _reshape_from_tensor(g, input, final_shape)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_split_static(split_size_or_sizes, _outputs):
|
|
if _outputs is None:
|
|
return False
|
|
if (
|
|
_is_value(split_size_or_sizes)
|
|
and split_size_or_sizes.node().kind() != "onnx::Constant"
|
|
):
|
|
return False
|
|
return True
|
|
|
|
|
|
@_beartype.beartype
|
|
def _optional_input_placeholder_tensor(g):
|
|
n = g.op("prim::Constant")
|
|
n.setType(_C.OptionalType.ofTensor())
|
|
return n
|
|
|
|
|
|
@_beartype.beartype
|
|
def _handle_reduce_dim_none(g: jit_utils.GraphContext, self, op_name):
|
|
rank = _get_tensor_rank(self)
|
|
if rank is not None and any(
|
|
[_get_tensor_dim_size(self, i) == 0 for i in range(rank)]
|
|
):
|
|
# If input tensor is empty, according to ONNX ReduceSum definition,
|
|
# set keepdims=1 so that the resulted tensor has the same rank as the input.
|
|
return g.op(op_name, self, keepdims_i=1)
|
|
return g.op(op_name, self, keepdims_i=0)
|
|
|
|
|
|
@_beartype.beartype
|
|
def dequantize_helper(
|
|
g: jit_utils.GraphContext,
|
|
qtensor: _C.Value,
|
|
qdtype: Optional[_C_onnx.TensorProtoDataType] = None,
|
|
) -> Tuple[_C.Value, _C.Value, _C.Value, Optional[_C.Value]]:
|
|
"""Appends to graph `g` ONNX nodes that dequantizes `qtensor` into `tensor`.
|
|
|
|
Args:
|
|
g: Graph, the ONNX IR graph that is under construction.
|
|
qtensor: torch._C.Value, either a tuple of (quantized_tensor, scale, zero_point)
|
|
for per tensor quantization, or
|
|
(quantized_tensor, scale, zero_point, axis) for per channel quantization,
|
|
representing the quantized tensor.
|
|
qdtype: torch.onnx.TensorProtoDataType default None, if not None, represents the
|
|
data type of quantized tensor. It must be either
|
|
torch.onnx.TensorProtoDataType.UINT8 or torch.onnx.TensorProtoDataType.INT8.
|
|
"""
|
|
unpacked_qtensors = _unpack_quantized_tensor(qtensor)
|
|
tensor, scale, zero_point = unpacked_qtensors[:3]
|
|
axis = unpacked_qtensors[3] if len(unpacked_qtensors) >= 4 else None
|
|
axis_i = _get_const(axis, "i", "axis")
|
|
input_qdtype = _type_utils.JitScalarType.from_value(tensor)
|
|
if qdtype is None:
|
|
if input_qdtype is not None:
|
|
qdtype = input_qdtype.onnx_type()
|
|
else:
|
|
qdtype = _C_onnx.TensorProtoDataType.UINT8
|
|
value = g.op("Cast", tensor, to_i=qdtype)
|
|
scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT)
|
|
zero_point = g.op("Cast", zero_point, to_i=qdtype)
|
|
|
|
if axis_i is not None and GLOBALS.export_onnx_opset_version < 13:
|
|
_onnx_opset_unsupported_detailed(
|
|
"DequantizeLinear",
|
|
GLOBALS.export_onnx_opset_version,
|
|
13,
|
|
"Attribute axis is not supported.",
|
|
qtensor,
|
|
)
|
|
|
|
return (
|
|
g.op("DequantizeLinear", value, scale, zero_point, axis_i=axis_i),
|
|
scale,
|
|
zero_point,
|
|
axis,
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def quantize_helper(
|
|
g: jit_utils.GraphContext,
|
|
tensor: _C.Value,
|
|
scale: _C.Value,
|
|
zero_point: _C.Value,
|
|
axis: Optional[_C.Value] = None,
|
|
) -> _C.Value:
|
|
"""Appends to graph `g` ONNX nodes that quantizes `tensor` based on `scale`, `zero_point` and `axis`.
|
|
|
|
Args:
|
|
g: Graph, the ONNX IR graph that is under construction.
|
|
tensor: torch._C.Value, representing the tensor to be quantized.
|
|
scale: torch._C.Value, quantized scale.
|
|
zero_point: torch._C.Value, quantized zero point.
|
|
axis: Optional[torch._C.Value] default None, if None, represents per tensor quantization.
|
|
Otherwise, represents per channel quantization, along given axis.
|
|
|
|
Returns:
|
|
A TupleConstruct storing information of the quantized tensor.
|
|
"""
|
|
if (
|
|
axis is not None
|
|
and not _is_none(axis)
|
|
and GLOBALS.export_onnx_opset_version < 13
|
|
):
|
|
_onnx_opset_unsupported_detailed(
|
|
"QuantizeLinear",
|
|
GLOBALS.export_onnx_opset_version,
|
|
13,
|
|
"Attribute axis is not supported.",
|
|
tensor,
|
|
)
|
|
|
|
assert scale is not None
|
|
if (
|
|
_type_utils.JitScalarType.from_value(scale, _type_utils.JitScalarType.UNDEFINED)
|
|
!= _type_utils.JitScalarType.FLOAT
|
|
):
|
|
scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT)
|
|
|
|
assert zero_point is not None
|
|
if _type_utils.JitScalarType.from_value(
|
|
zero_point, _type_utils.JitScalarType.UNDEFINED
|
|
) not in {
|
|
_type_utils.JitScalarType.UINT8,
|
|
_type_utils.JitScalarType.INT8,
|
|
}:
|
|
zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.UINT8)
|
|
output = g.op(
|
|
"QuantizeLinear",
|
|
tensor,
|
|
scale,
|
|
zero_point,
|
|
axis_i=_get_const(axis, "i", "axis"),
|
|
)
|
|
args = [output, scale, zero_point]
|
|
if axis is not None and not _is_none(axis):
|
|
args.append(axis)
|
|
return g.op("prim::TupleConstruct", *args)
|
|
|
|
|
|
@_beartype.beartype
|
|
def requantize_bias_helper(
|
|
g: jit_utils.GraphContext, bias, input_scale, weight_scale, axis=None
|
|
):
|
|
"""In PyTorch, bias is float and is quantized to int32 implicitly inside the quantized ATen op kernel.
|
|
In ONNX we need to make the quantization explicit because operators expect all of their inputs to be quantized.
|
|
Since int32 is not a supported output type by ONNX operator `QuantizeLinear`, quantization is exported using
|
|
regular operators.
|
|
"""
|
|
bias_scale = g.op("Mul", weight_scale, input_scale)
|
|
bias_scale_shape = g.op("Shape", bias_scale)
|
|
bias_zero_point = g.op(
|
|
"ConstantOfShape", bias_scale_shape, value_t=torch.tensor([0], dtype=torch.int)
|
|
)
|
|
q_bias = g.op(
|
|
"Cast", g.op("Div", bias, bias_scale), to_i=_C_onnx.TensorProtoDataType.INT32
|
|
)
|
|
axis_args = []
|
|
if axis is not None and not _is_none(axis):
|
|
axis_args.append(axis)
|
|
return g.op("prim::TupleConstruct", q_bias, bias_scale, bias_zero_point, *axis_args)
|
|
|
|
|
|
@_beartype.beartype
|
|
def args_have_same_dtype(args):
|
|
assert args
|
|
base_dtype = _type_utils.JitScalarType.from_value(args[0])
|
|
has_same_dtype = all(
|
|
_type_utils.JitScalarType.from_value(elem) == base_dtype for elem in args
|
|
)
|
|
return has_same_dtype
|
|
|
|
|
|
# TODO(justinchuby): Delete these setters, users should set the vars directly.
|
|
@_deprecation.deprecated(
|
|
"1.13",
|
|
"1.14",
|
|
"remove its usage and avoid setting internal variables directly",
|
|
)
|
|
def _set_opset_version(opset_version: int):
|
|
GLOBALS.export_onnx_opset_version = opset_version
|
|
|
|
|
|
@_deprecation.deprecated(
|
|
"1.13",
|
|
"1.14",
|
|
"remove its usage and avoid setting internal variables directly",
|
|
)
|
|
def _set_operator_export_type(operator_export_type):
|
|
GLOBALS.operator_export_type = operator_export_type
|
|
|
|
|
|
# This function is for debug use only.
|
|
# onnx_shape_inference = True by default.
|
|
@_deprecation.deprecated(
|
|
"1.13",
|
|
"1.14",
|
|
"remove its usage and avoid setting internal variables directly",
|
|
)
|
|
def _set_onnx_shape_inference(onnx_shape_inference: bool):
|
|
GLOBALS.onnx_shape_inference = onnx_shape_inference
|
|
|
|
|
|
# Deprecated. Internally use _type_utils.ScalarType
|
|
# TODO: remove these once we support Type's in the JIT IR and we can once again
|
|
# use the unified toType operator
|
|
cast_pytorch_to_onnx = {
|
|
"Byte": _C_onnx.TensorProtoDataType.UINT8,
|
|
"Char": _C_onnx.TensorProtoDataType.INT8,
|
|
"Double": _C_onnx.TensorProtoDataType.DOUBLE,
|
|
"Float": _C_onnx.TensorProtoDataType.FLOAT,
|
|
"Half": _C_onnx.TensorProtoDataType.FLOAT16,
|
|
"Int": _C_onnx.TensorProtoDataType.INT32,
|
|
"Long": _C_onnx.TensorProtoDataType.INT64,
|
|
"Short": _C_onnx.TensorProtoDataType.INT16,
|
|
"Bool": _C_onnx.TensorProtoDataType.BOOL,
|
|
"ComplexFloat": _C_onnx.TensorProtoDataType.COMPLEX64,
|
|
"ComplexDouble": _C_onnx.TensorProtoDataType.COMPLEX128,
|
|
"BFloat16": _C_onnx.TensorProtoDataType.BFLOAT16,
|
|
"Undefined": _C_onnx.TensorProtoDataType.UNDEFINED,
|
|
}
|
|
|
|
# Deprecated. Internally use _type_utils.ScalarType
|
|
scalar_name_to_pytorch = {
|
|
"uint8_t": "Byte",
|
|
"int8_t": "Char",
|
|
"double": "Double",
|
|
"float": "Float",
|
|
"half": "Half",
|
|
"int": "Int",
|
|
"int64_t": "Long",
|
|
"int16_t": "Short",
|
|
"bool": "Bool",
|
|
"complex64": "ComplexFloat",
|
|
"complex128": "ComplexDouble",
|
|
"qint8": "QInt8",
|
|
"quint8": "QUInt8",
|
|
"qint32": "QInt32",
|
|
"bfloat16": "BFloat16",
|
|
}
|
|
|
|
|
|
# Deprecated. Internally use _type_utils.ScalarType
|
|
# This indicates each scalar type's corresponding
|
|
# torch type. Related source:
|
|
# https://github.com/pytorch/pytorch/blob/344defc9733a45fee8d0c4d3f5530f631e823196/c10/core/ScalarType.h
|
|
scalar_type_to_pytorch_type = [
|
|
torch.uint8, # 0
|
|
torch.int8, # 1
|
|
torch.short, # 2
|
|
torch.int, # 3
|
|
torch.int64, # 4
|
|
torch.half, # 5
|
|
torch.float, # 6
|
|
torch.double, # 7
|
|
torch.complex32, # 8
|
|
torch.complex64, # 9
|
|
torch.complex128, # 10
|
|
torch.bool, # 11
|
|
torch.qint8, # 12
|
|
torch.quint8, # 13
|
|
torch.qint32, # 14
|
|
torch.bfloat16, # 15
|
|
]
|
|
|
|
# Deprecated. Internally use _type_utils.ScalarType
|
|
# source of truth is
|
|
# https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/tensor_dtypes.cpp
|
|
pytorch_name_to_type = {
|
|
"Byte": torch.uint8,
|
|
"Char": torch.int8,
|
|
"Double": torch.double,
|
|
"Float": torch.float,
|
|
"Half": torch.half,
|
|
"Int": torch.int,
|
|
"Long": torch.int64,
|
|
"Short": torch.short,
|
|
"Bool": torch.bool,
|
|
"ComplexFloat": torch.complex64,
|
|
"ComplexDouble": torch.complex128,
|
|
"QInt8": torch.qint8,
|
|
"QUInt8": torch.quint8,
|
|
"QInt32": torch.qint32,
|
|
"BFloat16": torch.bfloat16,
|
|
}
|
|
|
|
|
|
# Deprecated. Internally use _type_utils.ScalarType
|
|
scalar_type_to_onnx = [
|
|
cast_pytorch_to_onnx["Byte"], # 0
|
|
cast_pytorch_to_onnx["Char"], # 1
|
|
cast_pytorch_to_onnx["Short"], # 2
|
|
cast_pytorch_to_onnx["Int"], # 3
|
|
cast_pytorch_to_onnx["Long"], # 4
|
|
cast_pytorch_to_onnx["Half"], # 5
|
|
cast_pytorch_to_onnx["Float"], # 6
|
|
cast_pytorch_to_onnx["Double"], # 7
|
|
cast_pytorch_to_onnx["Undefined"], # 8
|
|
cast_pytorch_to_onnx["ComplexFloat"], # 9
|
|
cast_pytorch_to_onnx["ComplexDouble"], # 10
|
|
cast_pytorch_to_onnx["Bool"], # 11
|
|
cast_pytorch_to_onnx["Char"], # 12
|
|
cast_pytorch_to_onnx["Byte"], # 13
|
|
cast_pytorch_to_onnx["Int"], # 14
|
|
cast_pytorch_to_onnx["BFloat16"], # 15
|
|
]
|
|
|
|
# Global set to store the list of quantized operators in the network.
|
|
# This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX.
|
|
_quantized_ops: Set[int] = set()
|