pytorch/torch/csrc/utils/python_arg_parser.h
Edward Z. Yang a88a8ec827
Convolution derivatives in ATen (#4116)
* Convolution derivatives in ATen

This PR introduces ATen implementation of convolution, which dispatches to
THNN/CuDNN/nnpack based on input parameters. The general strategy is to compose
this function out of the various forward-backward pairs of specific
implementations, rather than write a monolithic function with backwards (which
is what we did before because the boilerplate of doing it otherwise would have
been very high.) The new API provides the following functions:

  - _convolution, which is a fully generic, native convolution implementation
    that dispatches to various other convolution implementations depending on
    input characteristics. This is prefixed with an underscore because it
    explicitly takes benchmark, deterministic and cudnn_enabled which are
    implementation details for CuDNN. The intent is to eventually provide a
    convolution that reads these parameters out of the context using #4104.
  - _convolution_nogroup is a convolution implementation for non-CuDNN
    algorithms which don't support group convolution natively.
  - _convolution_double_backward is the generic double-backwards implementation
    for convolution.

In more detail:

- Most functionality from torch/csrc/autograd/functions/convolution.cpp has been
  moved into aten/src/ATen/native/Convolution.cpp
- We continue to make use of ConvParams, but we now construct the parameters
  upon entry to a function from the function signature (which does not use
  ConvParams; having convolution take ConvParams directly would require teaching
  the code generator how to accept these as parameters, complicating ATen's API
  model) and destruct them when making subprocedure calls.
- I introduce a new idiom, input_r, which represents a const Tensor& reference,
  which will subsequently be assigned to a local Tensor input. This is helpful
  because a lot of the existing algorithms relied on being able to assign to
  locals, which is not permitted with a const reference.
- The native argument parser now supports std::array<bool,2> inputs (NB: there
  MUST NOT be a space; this is the same hack as is applied to derivatives.yaml)
- Native parser now supports Tensor? arguments, which indicates a nullable
  tensor. Previously this function was only used by NN methods.
- Documentation updates on THNN library
- I added an extra fgradInput argument to VolumetricConvolutionMM_updateOutput
  and VolumetricConvolutionMM_accGradParameters so that its buffer list lines up
  with the backward argument list. This makes it possible to write derivative
  for conv3d which previously was not supported (commented out in
  derivatives.yaml)
- Extra double_backward declarations for all convolution backwards functions was
  added.
- You can now use the syntax Tensor? in native_functions.yaml to indicate that a
  tensor argument is nullable.  There are adjustments to propagate this to the
  Python argument parser.
- NNPACK was ported to ATen, and ATen now builds and links against ATen if
  possible. New AT_NNPACK_ENABLED macro.  The nnpack functions are
  nnpack_spatial_convolution.
- Some modest CuDNN convolution refactoring to remove _forward from names.
- There's a new cudnn_convolution_backward function to deal with the fact that
  CuDNN convolution double backward requires you to have computed all gradients
  in one go.
- Variable set_flags now checks if the tensor is undefined, fixing a silent memory
  corruption.
- checkSameType updated to not raise an exception if called with Variable arguments
- "no ATen declaration found for" error message is improved to say what available declarations are
- make_variable now accepts undefined tensors, and returns an undefined tensor in this case.
2017-12-20 14:19:27 -05:00

254 lines
7.6 KiB
C++

#pragma once
// Parse arguments to Python functions implemented in C++
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
// the types relevant to PyTorch and distinguishes between overloaded function
// signatures.
//
// Example:
//
// static PythonArgParser parser({
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
// "norm(Scalar p=2)",
// });
// PyObject* parsed_args[3];
// auto r = parser.parse(args, kwargs, parsed_args);
// if (r.idx == 0) {
// norm(r.scalar(0), r.int64(1), r.bool(0));
// } else {
// norm(r.scalar(0));
// }
#include <Python.h>
#include <string>
#include <sstream>
#include <vector>
#include <ATen/ATen.h>
#include "torch/csrc/THP.h"
#include "torch/csrc/utils/object_ptr.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/utils/python_numbers.h"
#include "torch/csrc/DynamicTypes.h"
namespace torch {
enum class ParameterType {
TENSOR, SCALAR, INT64, DOUBLE, TENSOR_LIST, INT_LIST, GENERATOR,
BOOL, STORAGE, PYOBJECT
};
struct FunctionParameter;
struct FunctionSignature;
struct PythonArgs;
struct type_exception : public std::runtime_error {
using std::runtime_error::runtime_error;
};
[[noreturn]]
void type_error(const char *format, ...);
struct PythonArgParser {
explicit PythonArgParser(std::vector<std::string> fmts);
PythonArgs parse(PyObject* args, PyObject* kwargs, PyObject* dst[]);
private:
[[noreturn]]
void print_error(PyObject* args, PyObject* kwargs, PyObject* dst[]);
std::vector<FunctionSignature> signatures_;
std::string function_name;
ssize_t max_args;
};
struct PythonArgs {
PythonArgs(int idx, const FunctionSignature& signature, PyObject** args)
: idx(idx)
, signature(signature)
, args(args) {}
int idx;
const FunctionSignature& signature;
PyObject** args;
inline at::Tensor tensor(int i);
inline at::Scalar scalar(int i);
inline at::Scalar scalarWithDefault(int i, at::Scalar default_scalar);
inline std::vector<at::Tensor> tensorlist(int i);
inline std::vector<int64_t> intlist(int i);
inline std::vector<int64_t> intlistWithDefault(int i, std::vector<int64_t> default_intlist);
inline at::Generator* generator(int i);
inline std::unique_ptr<at::Storage> storage(int i);
inline PyObject* pyobject(int i);
inline int64_t toInt64(int i);
inline int64_t toInt64WithDefault(int i, int64_t default_int);
inline double toDouble(int i);
inline double toDoubleWithDefault(int i, double default_double);
inline bool toBool(int i);
inline bool toBoolWithDefault(int i, bool default_bool);
inline bool isNone(int i);
};
struct FunctionSignature {
explicit FunctionSignature(const std::string& fmt);
bool parse(PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception);
std::string toString() const;
std::string name;
std::vector<FunctionParameter> params;
ssize_t min_args;
ssize_t max_args;
ssize_t max_pos_args;
bool hidden;
bool deprecated;
};
struct FunctionParameter {
FunctionParameter(const std::string& fmt, bool keyword_only);
bool check(PyObject* obj);
void set_default_str(const std::string& str);
std::string type_name() const;
ParameterType type_;
bool optional;
bool allow_none;
bool keyword_only;
int size;
std::string name;
// having this as a raw PyObject * will presumably leak it, but these are only held by static objects
// anyway, and Py_Finalize can already be called when this is destructed.
PyObject *python_name;
at::Scalar default_scalar;
std::vector<int64_t> default_intlist;
union {
bool default_bool;
int64_t default_int;
double default_double;
};
};
inline at::Tensor PythonArgs::tensor(int i) {
if (!args[i]) return at::Tensor();
if (!THPVariable_Check(args[i])) {
// NB: Are you here because you passed None to a Variable method,
// and you expected an undefined tensor to be returned? Don't add
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
type_error("expected Variable as argument %d, but got %s", i, THPUtils_typename(args[i]));
}
return reinterpret_cast<THPVariable*>(args[i])->cdata;
}
inline at::Scalar PythonArgs::scalar(int i) {
return scalarWithDefault(i, signature.params[i].default_scalar);
}
inline at::Scalar PythonArgs::scalarWithDefault(int i, at::Scalar default_scalar) {
if (!args[i]) return default_scalar;
if (PyFloat_Check(args[i])) {
return at::Scalar(THPUtils_unpackDouble(args[i]));
}
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(args[i])));
}
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
if (!args[i]) return std::vector<at::Tensor>();
PyObject* arg = args[i];
auto tuple = PyTuple_Check(arg);
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
std::vector<at::Tensor> res(size);
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
if (!THPVariable_Check(obj)) {
type_error("expected Variable as element %d in argument %d, but got %s",
idx, i, THPUtils_typename(args[i]));
}
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
}
return res;
}
inline std::vector<int64_t> PythonArgs::intlist(int i) {
return intlistWithDefault(i, signature.params[i].default_intlist);
}
inline std::vector<int64_t> PythonArgs::intlistWithDefault(int i, std::vector<int64_t> default_intlist) {
if (!args[i]) return default_intlist;
PyObject* arg = args[i];
auto size = signature.params[i].size;
if (size > 0 && THPUtils_checkLong(arg)) {
return std::vector<int64_t>(size, THPUtils_unpackLong(arg));
}
auto tuple = PyTuple_Check(arg);
size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
std::vector<int64_t> res(size);
for (int idx = 0; idx < size; idx++) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
try {
res[idx] = THPUtils_unpackLong(obj);
} catch (std::runtime_error &e) {
type_error("%s(): argument '%s' must be %s, but found element of type %s at pos %d",
signature.name.c_str(), signature.params[i].name.c_str(),
signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1);
}
}
return res;
}
inline int64_t PythonArgs::toInt64(int i) {
return toInt64WithDefault(i, signature.params[i].default_int);
}
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
if (!args[i]) return default_int;
return THPUtils_unpackLong(args[i]);
}
inline double PythonArgs::toDouble(int i) {
return toDoubleWithDefault(i, signature.params[i].default_double);
}
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
if (!args[i]) return default_double;
return THPUtils_unpackDouble(args[i]);
}
inline bool PythonArgs::toBool(int i) {
return toBoolWithDefault(i, signature.params[i].default_bool);
}
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
if (!args[i]) return default_bool;
return args[i] == Py_True;
}
inline bool PythonArgs::isNone(int i) {
return args[i] == nullptr;
}
inline at::Generator* PythonArgs::generator(int i) {
if (!args[i]) return nullptr;
if (!THPGenerator_Check(args[i])) {
type_error("expected Generator as argument %d, but got %s", i, THPUtils_typename(args[i]));
}
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
}
inline std::unique_ptr<at::Storage> PythonArgs::storage(int i) {
if (!args[i]) return nullptr;
return createStorage(args[i]);
}
inline PyObject* PythonArgs::pyobject(int i) {
if (!args[i]) return Py_None;
return args[i];
}
} // namespace torch