pytorch/caffe2/python/layers/sparse_feature_hash.py
Jiyan Yang a8695178aa Adding parameter sharing API to Dper2
Summary:
To achive this, I modified the blob name scheme defined in a layer.
Before it was scope/fc_w and scope/fc_w_auto_0 (if there is another fc
    within the same scope).
Now I change it to scope/fc/w and scope/fc_auto_0/w.
That is, we rely on the uniqueness of the scoped layer name to define
names for blobs.

I also overwrote the create_param method in LayerModelHelper to let it
use the resolved name for blobs given the sharingparameter context.

There are some details such as making the initializer more structured
that I need to finalize.

Reviewed By: kennyhorror

Differential Revision: D5435132

fbshipit-source-id: a0525f5ea0977e255dd5ea765b38913f5951d455
2017-08-03 00:33:18 -07:00

103 lines
3.7 KiB
Python

## @package sparse_feature_hash
# Module caffe2.python.layers.sparse_feature_hash
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import schema
from caffe2.python.layers.layers import (
ModelLayer,
IdList,
IdScoreList,
)
import numpy as np
class SparseFeatureHash(ModelLayer):
def __init__(self, model, input_record, seed,
name='sparse_feature_hash', **kwargs):
super(SparseFeatureHash, self).__init__(model, name, input_record, **kwargs)
self.seed = seed
self.lengths_blob = schema.Scalar(
np.int32,
self.get_next_blob_reference("lengths"),
)
if schema.equal_schemas(input_record, IdList):
self.modulo = self.extract_hash_size(input_record.items.metadata)
metadata = schema.Metadata(
categorical_limit=self.modulo,
feature_specs=input_record.items.metadata.feature_specs,
)
hashed_indices = schema.Scalar(
np.int64,
self.get_next_blob_reference("hashed_idx")
)
hashed_indices.set_metadata(metadata)
self.output_schema = schema.List(
values=hashed_indices,
lengths_blob=self.lengths_blob,
)
elif schema.equal_schemas(input_record, IdScoreList):
self.values_blob = schema.Scalar(
np.float32,
self.get_next_blob_reference("values"),
)
self.modulo = self.extract_hash_size(input_record.keys.metadata)
metadata = schema.Metadata(
categorical_limit=self.modulo,
feature_specs=input_record.keys.metadata.feature_specs,
)
hashed_indices = schema.Scalar(
np.int64,
self.get_next_blob_reference("hashed_idx")
)
hashed_indices.set_metadata(metadata)
self.output_schema = schema.Map(
keys=hashed_indices,
values=self.values_blob,
lengths_blob=self.lengths_blob,
)
else:
assert False, "Input type must be one of (IdList, IdScoreList)"
def extract_hash_size(self, metadata):
if metadata.feature_specs and metadata.feature_specs.desired_hash_size:
return metadata.feature_specs.desired_hash_size
elif metadata.categorical_limit is not None:
return metadata.categorical_limit
else:
assert False, "desired_hash_size or categorical_limit must be set"
def add_ops(self, net):
if schema.equal_schemas(self.output_schema, IdList):
input_blobs = self.input_record.items.field_blobs()
output_blobs = self.output_schema.items.field_blobs()
net.Alias(
self.input_record.lengths.field_blobs(),
self.lengths_blob.field_blobs()
)
elif schema.equal_schemas(self.output_schema, IdScoreList):
input_blobs = self.input_record.keys.field_blobs()
output_blobs = self.output_schema.keys.field_blobs()
net.Alias(
self.input_record.values.field_blobs(),
self.values_blob.field_blobs()
)
net.Alias(
self.input_record.lengths.field_blobs(),
self.lengths_blob.field_blobs()
)
else:
raise NotImplementedError()
net.IndexHash(input_blobs,
output_blobs,
seed=self.seed,
modulo=self.modulo)