mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
To achive this, I modified the blob name scheme defined in a layer.
Before it was scope/fc_w and scope/fc_w_auto_0 (if there is another fc
within the same scope).
Now I change it to scope/fc/w and scope/fc_auto_0/w.
That is, we rely on the uniqueness of the scoped layer name to define
names for blobs.
I also overwrote the create_param method in LayerModelHelper to let it
use the resolved name for blobs given the sharingparameter context.
There are some details such as making the initializer more structured
that I need to finalize.
Reviewed By: kennyhorror
Differential Revision: D5435132
fbshipit-source-id: a0525f5ea0977e255dd5ea765b38913f5951d455
103 lines
3.7 KiB
Python
103 lines
3.7 KiB
Python
## @package sparse_feature_hash
|
|
# Module caffe2.python.layers.sparse_feature_hash
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
IdList,
|
|
IdScoreList,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
|
|
class SparseFeatureHash(ModelLayer):
|
|
|
|
def __init__(self, model, input_record, seed,
|
|
name='sparse_feature_hash', **kwargs):
|
|
super(SparseFeatureHash, self).__init__(model, name, input_record, **kwargs)
|
|
|
|
self.seed = seed
|
|
self.lengths_blob = schema.Scalar(
|
|
np.int32,
|
|
self.get_next_blob_reference("lengths"),
|
|
)
|
|
|
|
if schema.equal_schemas(input_record, IdList):
|
|
self.modulo = self.extract_hash_size(input_record.items.metadata)
|
|
metadata = schema.Metadata(
|
|
categorical_limit=self.modulo,
|
|
feature_specs=input_record.items.metadata.feature_specs,
|
|
)
|
|
hashed_indices = schema.Scalar(
|
|
np.int64,
|
|
self.get_next_blob_reference("hashed_idx")
|
|
)
|
|
hashed_indices.set_metadata(metadata)
|
|
self.output_schema = schema.List(
|
|
values=hashed_indices,
|
|
lengths_blob=self.lengths_blob,
|
|
)
|
|
elif schema.equal_schemas(input_record, IdScoreList):
|
|
self.values_blob = schema.Scalar(
|
|
np.float32,
|
|
self.get_next_blob_reference("values"),
|
|
)
|
|
self.modulo = self.extract_hash_size(input_record.keys.metadata)
|
|
metadata = schema.Metadata(
|
|
categorical_limit=self.modulo,
|
|
feature_specs=input_record.keys.metadata.feature_specs,
|
|
)
|
|
hashed_indices = schema.Scalar(
|
|
np.int64,
|
|
self.get_next_blob_reference("hashed_idx")
|
|
)
|
|
hashed_indices.set_metadata(metadata)
|
|
self.output_schema = schema.Map(
|
|
keys=hashed_indices,
|
|
values=self.values_blob,
|
|
lengths_blob=self.lengths_blob,
|
|
)
|
|
else:
|
|
assert False, "Input type must be one of (IdList, IdScoreList)"
|
|
|
|
def extract_hash_size(self, metadata):
|
|
if metadata.feature_specs and metadata.feature_specs.desired_hash_size:
|
|
return metadata.feature_specs.desired_hash_size
|
|
elif metadata.categorical_limit is not None:
|
|
return metadata.categorical_limit
|
|
else:
|
|
assert False, "desired_hash_size or categorical_limit must be set"
|
|
|
|
def add_ops(self, net):
|
|
if schema.equal_schemas(self.output_schema, IdList):
|
|
input_blobs = self.input_record.items.field_blobs()
|
|
output_blobs = self.output_schema.items.field_blobs()
|
|
|
|
net.Alias(
|
|
self.input_record.lengths.field_blobs(),
|
|
self.lengths_blob.field_blobs()
|
|
)
|
|
elif schema.equal_schemas(self.output_schema, IdScoreList):
|
|
input_blobs = self.input_record.keys.field_blobs()
|
|
output_blobs = self.output_schema.keys.field_blobs()
|
|
|
|
net.Alias(
|
|
self.input_record.values.field_blobs(),
|
|
self.values_blob.field_blobs()
|
|
)
|
|
net.Alias(
|
|
self.input_record.lengths.field_blobs(),
|
|
self.lengths_blob.field_blobs()
|
|
)
|
|
else:
|
|
raise NotImplementedError()
|
|
net.IndexHash(input_blobs,
|
|
output_blobs,
|
|
seed=self.seed,
|
|
modulo=self.modulo)
|