pytorch/caffe2/python/rnn/rnn_cell_test_util.py
Alexander Sidorov a7be496fe2 Revert D5589309: modify _LSTM into _RNN to adapt GRU
Summary:
This reverts commit f5af67dfe0842acd68223f6da3e96a81639e8049

bypass-lint

Differential Revision: D5589309

fbshipit-source-id: 79b0a3a9455829c3899472a1368ef36dc75f6e14
2017-08-10 16:42:41 -07:00

73 lines
2.3 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import workspace, scope
from caffe2.python.model_helper import ModelHelper
import numpy as np
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
def tanh(x):
return 2.0 * sigmoid(2.0 * x) - 1
def _prepare_rnn(t, n, dim_in, create_rnn, outputs_with_grads,
forget_bias, memory_optim=False,
forward_only=False, drop_states=False, T=None,
two_d_initial_states=None, dim_out=None):
if dim_out is None:
dim_out = [dim_in]
print("Dims: ", t, n, dim_in, dim_out)
model = ModelHelper(name='external')
if two_d_initial_states is None:
two_d_initial_states = np.random.randint(2)
def generate_input_state(n, d):
if two_d_initial_states:
return np.random.randn(n, d).astype(np.float32)
else:
return np.random.randn(1, n, d).astype(np.float32)
states = []
for layer_id, d in enumerate(dim_out):
h, c = model.net.AddExternalInputs(
"hidden_init_{}".format(layer_id),
"cell_init_{}".format(layer_id),
)
states.extend([h, c])
workspace.FeedBlob(h, generate_input_state(n, d).astype(np.float32))
workspace.FeedBlob(c, generate_input_state(n, d).astype(np.float32))
# Due to convoluted RNN scoping logic we make sure that things
# work from a namescope
with scope.NameScope("test_name_scope"):
input_blob, seq_lengths = model.net.AddScopedExternalInputs(
'input_blob', 'seq_lengths')
outputs = create_rnn(
model, input_blob, seq_lengths, states,
dim_in=dim_in, dim_out=dim_out, scope="external/recurrent",
outputs_with_grads=outputs_with_grads,
memory_optimization=memory_optim,
forget_bias=forget_bias,
forward_only=forward_only,
drop_states=drop_states,
static_rnn_unroll_size=T,
)
workspace.RunNetOnce(model.param_init_net)
workspace.FeedBlob(
seq_lengths,
np.random.randint(1, t + 1, size=(n,)).astype(np.int32)
)
return outputs, model.net, states + [input_blob]