mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Previously, our AST was a DAG, where shared Nodes indicated a computation should be reused. This commit rewrites the IR into a new functional representation which represents sharing explicitly using variable bindings. We offer a few justifications for this new style: 1. The new representation is not all that different from the old one; it is about as easy to construct, and the lack of an explicit graph doesn't negatively impact our ability to interpret the graph, since we've chosen, as a matter of design, to NOT have the IR participate in the actual execution of a graph. 2. The new let-binding representation has an implicit ordering, which we can use to conveniently keep track of the original order the trace showed up as. This automatically gives us a topsort, and gives us an easier to read textual representation of our IR: %14 = Embedding %11, %0, -1, None, 2, False, False %15 = Dropout %14, 0.2, True, False %16 = Index %12, 0 %17 = Index %12, 1 %18 = Index %13, 0 %19 = Index %13, 1 %20 = Index %15, 0 %21 = Linear %20, %1, %3 %22 = Linear %16, %2, %4 3. It moves us closer to a Futhark style language (http://futhark-lang.org/publications/pldi17.pdf). Major aspects of the diff - Node is replaced with Expr and Arg, a pair of mutually recursive structures which represent our new language. In BNF, the language looks like this: a ::= c | %i e ::= %i, ... = e | PyOp e, ... | Ret %i, ... Technically, Ret is not actually a return (no control flow is involved), it just tuples up a series of tensors (identified by variables). One important invariant is that locals are always tensors; they are never constants (this is asymmetric with Args.) - Arguments support Python constants. This is an important piece because many operators take extra Python literals like integers and tuples in order to specify extra parameters about how an operator operates. Adding this was essential to getting word_language_model to work. - As both Expr and Arg have multiple variants, there is new infrastructure for doing case on the variants using ExprVisitor and ArgVisitor. The strategy here is adapted from WebAssembly's visitors, although we have generalized to permit arbitrary argument forwarding, which is necessary to support tail-recursive visitor calls. TCO is important because our interpreter may recurse arbitrarily deep into a stack of nested lets. If users wish, they can also manually case on the type tag. - Tracing is now turned on and off using _tracer_enter/_tracer_exit in torch._C. _tracer_enter accepts a list of variables which are to be treated as arguments; _tracer_exit accepts the list of traced variables which should be returned when you reexecute the trace, and returns the trace expression which can be reexecuted. GlobalTracingState is a global variable which tracks whether or not we are tracing or not. - You use run_forward to execute a trace on some set of parameters. - When under tracing, variables keep track, via trace_local, what the name of their variables in the IR are. Here is a simple runner which leaks memory but can be used to JIT models: import torch.autograd.function as F import torch._C def jit(model): import types real_forward = model.forward def forward(self, *args): def flatten(x): return tuple(F._iter_variables(x)) if not hasattr(self, "saved_trace"): torch._C._tracer_enter(tuple(self.parameters()) + flatten(args)) out = real_forward(*args) self.saved_trace = torch._C._tracer_exit(flatten(out)) self.saved_outs = out return out else: flat_out = Variable._execution_engine.run_forward(self.saved_trace, tuple(self.parameters()) + flatten(args)) return F._unflatten(flat_out, self.saved_outs) Major problems: - Sanity checking is spotty at best, especially when users pass in variables. - The interpreter leaks tensor memory from the store. When we add back def-use we should be able to deallocate tensors as soon as we know they are no longer necessary. - The interpreter needs to reach feature parity with the old execution engine. From there, we need to see if backwards can be subsumed as well. - I still have no confidence in having memory managed everything correctly. This requires a close look. - Rather than return an *open* expression as a trace, we should return a *lambda* instead, which knows about how many formal parameters it requires. - The IR is not introspectable from Python at the moment, but this is simply a matter of implementing all the binding code. - The tracer is NOT reentrant (you can't trace while you're inside a trace.) Furthermore, no sanity checking is done if you try to incorrectly reuse things from one trace in another. Signed-off-by: Edward Z. Yang <ezyang@fb.com>
342 lines
13 KiB
C++
342 lines
13 KiB
C++
#include "torch/csrc/autograd/python_engine.h"
|
|
|
|
#include "torch/csrc/autograd/engine.h"
|
|
#include "torch/csrc/autograd/python_function.h"
|
|
#include "torch/csrc/THP.h"
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/utils/auto_gil.h"
|
|
|
|
#include <unordered_set>
|
|
|
|
using namespace torch::autograd;
|
|
|
|
struct THPEngine {
|
|
PyObject_HEAD
|
|
};
|
|
|
|
struct PythonEngine : public Engine {
|
|
virtual void thread_main(std::shared_ptr<ReadyQueue> queue, int device) override {
|
|
// Create a PyThreadState, but release the GIL. This lets AutoGIL calls
|
|
// inside thread_main acquire the GIL without having to create a new
|
|
// PyThreadState each time.
|
|
AutoGIL gil;
|
|
AutoNoGIL no_gil;
|
|
Engine::thread_main(queue, device);
|
|
}
|
|
|
|
virtual void thread_on_exception(FunctionTask& task, std::exception& e) override {
|
|
auto python_err = dynamic_cast<python_error*>(&e);
|
|
if (python_err) {
|
|
python_err->persist();
|
|
}
|
|
Engine::thread_on_exception(task, e);
|
|
}
|
|
};
|
|
|
|
static PythonEngine engine;
|
|
|
|
PyObject *THPEngineClass = NULL;
|
|
|
|
struct CallbackContext {
|
|
std::string error;
|
|
THPObjectPtr outputs;
|
|
// Used to determine which callback arguments should be used to
|
|
// fill outputs.
|
|
// Function -> ([grad_nr, outputs_idx], is_leaf)
|
|
std::unordered_map<
|
|
std::shared_ptr<Function>,
|
|
std::pair<std::vector<std::pair<int, int>>, bool>> output_map;
|
|
};
|
|
|
|
void compute_partial_exec_callbacks(const function_list& roots,
|
|
const CallbackContext& ctx,
|
|
Engine::callback_map& map) {
|
|
// This callback is used to suppress the computation of a node
|
|
// if it is not necessary.
|
|
static Engine::callback_type abort_callback(
|
|
[](Function* fn, variable_list &vars) { return false; });
|
|
|
|
std::vector<Function*> queue;
|
|
std::unordered_set<Function*> seen; // for the initial DFS
|
|
std::unordered_set<Function*> needed; // functions to compute
|
|
std::unordered_map<Function*, std::vector<Function*>> rev_graph;
|
|
|
|
// Reverse the next_fn edges
|
|
queue.reserve(roots.size());
|
|
for (auto& root : roots) {
|
|
auto ptr = root.first.get();
|
|
bool unseen;
|
|
std::tie(std::ignore, unseen) = seen.insert(ptr);
|
|
if (unseen) queue.emplace_back(ptr);
|
|
}
|
|
while (!queue.empty()) {
|
|
auto fn = queue.back(); queue.pop_back();
|
|
for (auto& next_fn_pair : fn->next_functions) {
|
|
auto next_fn = next_fn_pair.first.get();
|
|
if (!next_fn) continue;
|
|
rev_graph[next_fn].push_back(fn);
|
|
if (seen.insert(next_fn).second) {
|
|
queue.push_back(next_fn);
|
|
}
|
|
}
|
|
}
|
|
auto all_functions = std::move(seen); // this is cheap and improves readability
|
|
|
|
// Find all functions we need to compute
|
|
queue.clear();
|
|
for (auto input_info: ctx.output_map) {
|
|
auto input = input_info.first.get();
|
|
auto& rev_edges = rev_graph[input];
|
|
if (rev_edges.size() == 0) throw std::runtime_error("differentiated input is unreachable");
|
|
queue.emplace_back(input);
|
|
needed.insert(input);
|
|
}
|
|
while (!queue.empty()) {
|
|
auto fn = queue.back(); queue.pop_back();
|
|
for (auto rev_next_fn : rev_graph[fn]) {
|
|
if (needed.insert(rev_next_fn).second) {
|
|
queue.push_back(rev_next_fn);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prevent expansion for functions in {all_vertices} \ {needed}
|
|
for (auto fn : all_functions) {
|
|
if (needed.count(fn) > 0) continue;
|
|
map.emplace(fn, abort_callback);
|
|
}
|
|
}
|
|
|
|
// Implementation of torch._C._EngineBase.run_backward
|
|
PyObject *THPEngine_run_backward(THPEngine *self, PyObject *args, PyObject *kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
PyObject *variables = NULL;
|
|
PyObject *grad_variables = NULL;
|
|
unsigned char keep_graph = 0;
|
|
PyObject *inputs = NULL;
|
|
unsigned char only_inputs = 0;
|
|
const char *accepted_kwargs[] = {"variables", "grad_variables",
|
|
"keep_graph", "inputs", "only_inputs", NULL};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OOb|Ob", (char**)accepted_kwargs,
|
|
&variables, &grad_variables, &keep_graph, &inputs, &only_inputs))
|
|
return NULL;
|
|
|
|
THPUtils_assert(PyTuple_Check(variables), "variables argument is expected to "
|
|
"be a tuple, but got %s", THPUtils_typename(variables));
|
|
THPUtils_assert(PyTuple_Check(grad_variables), "variables argument is "
|
|
"expected to be a tuple, but got %s", THPUtils_typename(grad_variables));
|
|
|
|
Py_ssize_t num_variables = PyTuple_GET_SIZE(variables);
|
|
Py_ssize_t num_gradients = PyTuple_GET_SIZE(grad_variables);
|
|
THPUtils_assert(num_variables == num_gradients, "got %ld variables and %ld "
|
|
"gradients", num_variables, num_gradients);
|
|
|
|
function_list roots(num_variables);
|
|
variable_list grads(num_variables);
|
|
for (int i = 0; i < num_variables; i++) {
|
|
PyObject *_variable = PyTuple_GET_ITEM(variables, i);
|
|
THPUtils_assert(THPVariable_Check(_variable), "element %d of variables "
|
|
"tuple is not a Variable", i);
|
|
auto& variable = ((THPVariable*)_variable)->cdata;
|
|
THPUtils_assert(!variable->is_volatile,
|
|
"element %d of variables tuple is volatile", i);
|
|
// If grad_fn is NULL (as is the case for a leaf node), we instead
|
|
// interpret the gradient function to be a grad accumulator,
|
|
// which will accumulate its inputs into the grad property of the
|
|
// variable. These nodes get suppressed in some situations,
|
|
// see "suppress grad accumulation" below.
|
|
auto grad_fn = variable->grad_fn ? variable->grad_fn : variable->get_grad_accumulator();
|
|
THPUtils_assert(grad_fn, "element %d of variables tuple does not require grad", i);
|
|
int output_nr = variable->grad_fn ? variable->output_nr : 0;
|
|
roots[i] = std::make_pair<>(std::move(grad_fn), output_nr);
|
|
|
|
PyObject *grad = PyTuple_GET_ITEM(grad_variables, i);
|
|
if (THPVariable_Check(grad)) {
|
|
grads[i] = ((THPVariable*)grad)->cdata;
|
|
} else {
|
|
THPUtils_assert(grad == Py_None,
|
|
"element %d of gradients tuple is not a Variable or None", i);
|
|
THPUtils_assert(!variable->requires_grad,
|
|
"element %d of gradients tuple is None, but the corresponding Variable requires grad");
|
|
}
|
|
}
|
|
|
|
Engine::callback_map callbacks;
|
|
CallbackContext ctx;
|
|
if (inputs != NULL) {
|
|
THPUtils_assert(PyTuple_Check(inputs), "inputs argument has to be a tuple");
|
|
int num_inputs = PyTuple_GET_SIZE(inputs);
|
|
ctx.outputs = PyTuple_New(num_inputs);
|
|
// First, find all relevant functions and fill ctx.output_map
|
|
for (int i = 0; i < num_inputs; ++i) {
|
|
PyObject *input = PyTuple_GET_ITEM(inputs, i);
|
|
THPUtils_assert(THPVariable_Check(input),
|
|
"all inputs have to be Variables, but got %s", THPUtils_typename(input));
|
|
THPVariable *input_var = (THPVariable*)input;
|
|
auto grad_fn = input_var->cdata->grad_fn;
|
|
int output_nr = input_var->cdata->output_nr;
|
|
bool is_leaf = !grad_fn;
|
|
if (is_leaf) {
|
|
grad_fn = input_var->cdata->grad_accumulator.lock();
|
|
}
|
|
THPUtils_assert(grad_fn, "One of the differentiated Variables appears to not have "
|
|
"been used in the graph");
|
|
auto& fn_info = ctx.output_map[grad_fn];
|
|
fn_info.first.emplace_back(output_nr, i);
|
|
fn_info.second = is_leaf;
|
|
}
|
|
// Register callbacks that will gather the outputs
|
|
for (auto& entry : ctx.output_map) {
|
|
auto& fn_info = entry.second;
|
|
callbacks.emplace(entry.first.get(), [&ctx, &fn_info](Function* _unused, variable_list& grads) {
|
|
auto& saved_outputs = fn_info.first;
|
|
bool is_leaf = fn_info.second;
|
|
AutoGIL gil;
|
|
for (auto& saved_out : saved_outputs) {
|
|
PyTuple_SET_ITEM(ctx.outputs.get(), saved_out.second,
|
|
THPVariable_Wrap(grads[saved_out.first]));
|
|
}
|
|
// Suppress grad accumulation.
|
|
// If the variable is a leaf, the next function to execute
|
|
// is a grad_accumulator. But when inputs != NULL, we should
|
|
// NOT accumulate, so terminate execution.
|
|
return !is_leaf;
|
|
});
|
|
}
|
|
// Disable execution for all unneeded functions
|
|
if (only_inputs) {
|
|
compute_partial_exec_callbacks(roots, ctx, callbacks);
|
|
}
|
|
}
|
|
|
|
try {
|
|
AutoNoGIL no_gil;
|
|
engine.execute(roots, grads, keep_graph, callbacks);
|
|
} catch (python_error &e) {
|
|
e.restore();
|
|
return nullptr;
|
|
}
|
|
|
|
if (ctx.outputs) {
|
|
return ctx.outputs.release();
|
|
} else {
|
|
Py_RETURN_NONE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPEngine_run_forward(THPEngine *self, PyObject *args, PyObject *kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS;
|
|
PyObject* expr_obj;
|
|
PyObject* input_objs;
|
|
const char *accepted_kwargs[] = {"expr", "inputs", NULL};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO", (char**)accepted_kwargs,
|
|
&expr_obj, &input_objs))
|
|
return NULL;
|
|
|
|
THPUtils_assert(THPExpr_Check(expr_obj), "expr argument is expected to be an "
|
|
"Expr, but got %s", THPUtils_typename(expr_obj));
|
|
THPUtils_assert(PyTuple_Check(input_objs), "inputs argument is expected to "
|
|
"be a tuple, but got %s", THPUtils_typename(input_objs));
|
|
|
|
Py_ssize_t num_inputs = PyTuple_GET_SIZE(input_objs);
|
|
|
|
environment env;
|
|
// TODO: skeevy, requires on invariant that the tracing numbering
|
|
// has the first N parameters allocated to parameters
|
|
for (int i = 0; i < num_inputs; i++) {
|
|
PyObject* input_obj = PyTuple_GET_ITEM(input_objs, i);
|
|
THPUtils_assert(THPVariable_Check(input_obj), "element %d of inputs "
|
|
"tuple is not a Variable", i);
|
|
auto& input_var = ((THPVariable*)input_obj)->cdata;
|
|
env.insert({i, input_var});
|
|
}
|
|
|
|
variable_list results = interpret(((THPExpr*)expr_obj)->cdata, env);
|
|
|
|
int num_outputs = results.size();
|
|
PyObject *result = PyTuple_New(num_outputs);
|
|
for (int i = 0; i < num_outputs; i++) {
|
|
PyTuple_SET_ITEM(result, i, THPVariable_Wrap(results.at(i)));
|
|
}
|
|
|
|
return result;
|
|
END_HANDLE_TH_ERRORS;
|
|
}
|
|
|
|
PyObject* THPEngine_queue_callback(PyObject *self, PyObject *_callback) {
|
|
std::shared_ptr<PyObject> callback(_callback, [](PyObject *obj) { AutoGIL gil; Py_DECREF(obj); });
|
|
Py_INCREF(_callback);
|
|
engine.queue_callback([callback]() {
|
|
AutoGIL gil;
|
|
THPObjectPtr result {PyObject_CallFunctionObjArgs(callback.get(), NULL)};
|
|
if (!result) throw python_error();
|
|
});
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject *THPEngine_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
return type->tp_alloc(type, 0);
|
|
}
|
|
|
|
static struct PyMethodDef THPEngine_methods[] = {
|
|
{(char*)"run_backward", (PyCFunction)THPEngine_run_backward, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{(char*)"run_forward", (PyCFunction)THPEngine_run_forward, METH_VARARGS | METH_KEYWORDS, NULL},
|
|
{(char*)"queue_callback", (PyCFunction)THPEngine_queue_callback, METH_O, NULL},
|
|
{NULL}
|
|
};
|
|
|
|
|
|
PyTypeObject THPEngineType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"torch._C._EngineBase", /* tp_name */
|
|
sizeof(THPEngine), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
0, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
NULL, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
THPEngine_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
THPEngine_new /* tp_new */
|
|
};
|
|
|
|
bool THPEngine_initModule(PyObject *module)
|
|
{
|
|
if (PyType_Ready(&THPEngineType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPEngineType);
|
|
PyModule_AddObject(module, "_ImperativeEngine", (PyObject *)&THPEngineType);
|
|
return true;
|
|
}
|