pytorch/torch/csrc/Module.cpp
Edward Z. Yang a797ab9343 Rewrite AST to a new, more functional representation.
Previously, our AST was a DAG, where shared Nodes indicated a computation
should be reused.  This commit rewrites the IR into a new functional
representation which represents sharing explicitly using variable
bindings.

We offer a few justifications for this new style:

1. The new representation is not all that different from the
old one; it is about as easy to construct, and the lack of an
explicit graph doesn't negatively impact our ability to interpret
the graph, since we've chosen, as a matter of design, to NOT have
the IR participate in the actual execution of a graph.

2. The new let-binding representation has an implicit ordering,
which we can use to conveniently keep track of the original order
the trace showed up as.  This automatically gives us a topsort,
and gives us an easier to read textual representation of our
IR:

  %14 = Embedding %11, %0, -1, None, 2, False, False
  %15 = Dropout %14, 0.2, True, False
  %16 = Index %12, 0
  %17 = Index %12, 1
  %18 = Index %13, 0
  %19 = Index %13, 1
  %20 = Index %15, 0
  %21 = Linear %20, %1, %3
  %22 = Linear %16, %2, %4

3. It moves us closer to a Futhark style language
(http://futhark-lang.org/publications/pldi17.pdf).

Major aspects of the diff

- Node is replaced with Expr and Arg, a pair of mutually recursive
  structures which represent our new language.  In BNF, the language
  looks like this:

    a ::= c | %i
    e ::= %i, ... = e
        | PyOp e, ...
        | Ret %i, ...

  Technically, Ret is not actually a return (no control flow is involved),
  it just tuples up a series of tensors (identified by variables).

  One important invariant is that locals are always tensors; they
  are never constants (this is asymmetric with Args.)

- Arguments support Python constants.  This is an important piece because
  many operators take extra Python literals like integers and tuples in
  order to specify extra parameters about how an operator operates.  Adding
  this was essential to getting word_language_model to work.

- As both Expr and Arg have multiple variants, there is new infrastructure
  for doing case on the variants using ExprVisitor and ArgVisitor.  The
  strategy here is adapted from WebAssembly's visitors, although we have
  generalized to permit arbitrary argument forwarding, which is necessary
  to support tail-recursive visitor calls.  TCO is important because our
  interpreter may recurse arbitrarily deep into a stack of nested lets.
  If users wish, they can also manually case on the type tag.

- Tracing is now turned on and off using _tracer_enter/_tracer_exit in
  torch._C.  _tracer_enter accepts a list of variables which are to be
  treated as arguments; _tracer_exit accepts the list of traced variables
  which should be returned when you reexecute the trace, and returns
  the trace expression which can be reexecuted.  GlobalTracingState
  is a global variable which tracks whether or not we are tracing or not.

- You use run_forward to execute a trace on some set of parameters.

- When under tracing, variables keep track, via trace_local, what the
  name of their variables in the IR are.

Here is a simple runner which leaks memory but can be used to JIT models:

  import torch.autograd.function as F
  import torch._C

  def jit(model):
      import types
      real_forward = model.forward
      def forward(self, *args):
          def flatten(x):
              return tuple(F._iter_variables(x))
          if not hasattr(self, "saved_trace"):
              torch._C._tracer_enter(tuple(self.parameters()) + flatten(args))
              out = real_forward(*args)
              self.saved_trace = torch._C._tracer_exit(flatten(out))
              self.saved_outs = out
              return out
          else:
              flat_out = Variable._execution_engine.run_forward(self.saved_trace, tuple(self.parameters()) + flatten(args))
              return F._unflatten(flat_out, self.saved_outs)

Major problems:

- Sanity checking is spotty at best, especially when users pass in variables.

- The interpreter leaks tensor memory from the store.  When we add back def-use
  we should be able to deallocate tensors as soon as we know they are no longer
  necessary.

- The interpreter needs to reach feature parity with the old execution engine.
  From there, we need to see if backwards can be subsumed as well.

- I still have no confidence in having memory managed everything correctly.
  This requires a close look.

- Rather than return an *open* expression as a trace, we should return a
  *lambda* instead, which knows about how many formal parameters it
  requires.

- The IR is not introspectable from Python at the moment, but this is simply a
  matter of implementing all the binding code.

- The tracer is NOT reentrant (you can't trace while you're inside a trace.)
  Furthermore, no sanity checking is done if you try to incorrectly reuse
  things from one trace in another.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-09-05 17:48:55 -04:00

936 lines
44 KiB
C++

#include <Python.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdbool.h>
#include <unordered_map>
#include <libshm.h>
#include <TH/TH.h>
#include <ATen/ATen.h>
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/autograd/python_tracer.h"
#ifdef WITH_CUDNN
#include "cudnn/Module.h"
#endif
#define WITH_NUMPY_IMPORT_ARRAY
#include "THP.h"
#include "ModuleSparse.cpp"
PyObject* module;
PyObject* tensor_classes;
PyObject *THPDefaultTensorClass = NULL;
THPGenerator *THPDefaultGenerator = NULL;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
static bool THPModule_loadClasses(PyObject *self)
{
#define ASSERT_NOT_NULL(ptr) if (!(ptr)) { THPUtils_setError("couldn't load classes"); return false; }
PyObject *torch_module = PyImport_ImportModule("torch");
if (!torch_module) {
THPUtils_setError("class loader couldn't access torch module");
return false;
}
ASSERT_NOT_NULL(tensor_classes = PyObject_GetAttrString(torch_module, "_tensor_classes"));
if (!THPDoubleTensor_postInit(torch_module)) return false;
if (!THPFloatTensor_postInit(torch_module)) return false;
if (!THPHalfTensor_postInit(torch_module)) return false;
if (!THPLongTensor_postInit(torch_module)) return false;
if (!THPIntTensor_postInit(torch_module)) return false;
if (!THPShortTensor_postInit(torch_module)) return false;
if (!THPCharTensor_postInit(torch_module)) return false;
if (!THPByteTensor_postInit(torch_module)) return false;
ASSERT_NOT_NULL(THPDoubleStorageClass = PyObject_GetAttrString(torch_module,(char*)"DoubleStorage"));
ASSERT_NOT_NULL(THPFloatStorageClass = PyObject_GetAttrString(torch_module,(char*)"FloatStorage"));
ASSERT_NOT_NULL(THPHalfStorageClass = PyObject_GetAttrString(torch_module,(char*)"HalfStorage"));
ASSERT_NOT_NULL(THPLongStorageClass = PyObject_GetAttrString(torch_module,(char*)"LongStorage"));
ASSERT_NOT_NULL(THPIntStorageClass = PyObject_GetAttrString(torch_module,(char*)"IntStorage"));
ASSERT_NOT_NULL(THPShortStorageClass = PyObject_GetAttrString(torch_module,(char*)"ShortStorage"));
ASSERT_NOT_NULL(THPCharStorageClass = PyObject_GetAttrString(torch_module,(char*)"CharStorage"));
ASSERT_NOT_NULL(THPByteStorageClass = PyObject_GetAttrString(torch_module,(char*)"ByteStorage"));
return true;
#undef ASSERT_NOT_NULL
}
static PyObject * THPModule_initNames(PyObject *self, PyObject *arg)
{
static std::vector<std::string> names;
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
if (!types) return NULL;
int num_classes = PySequence_Fast_GET_SIZE(types.get());
names.reserve(names.size() + num_classes);
for (int i = 0; i < num_classes; i++) {
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject");
PyTypeObject* type = (PyTypeObject*)obj;
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
if (!module_name) return NULL;
THPUtils_assert(THPUtils_checkString(module_name.get()),
"expected __module__ to be a string");
std::string name = THPUtils_unpackString(module_name.get());
names.push_back(name + "." + type->tp_name);
type->tp_name = names.back().c_str();
}
Py_RETURN_NONE;
}
static bool THPModule_assignStateless(PyObject *self)
{
#define INIT_STATELESS(type) \
stateless = PyObject_CallFunctionObjArgs((PyObject*)&TH_CONCAT_2(type, TensorStatelessType), NULL); \
if (!stateless) { \
return false; \
} \
if (PyObject_SetAttrString(TH_CONCAT_3(THP,type,TensorClass), THP_STATELESS_ATTRIBUTE_NAME, stateless) == -1) { \
return false; \
}
PyObject *stateless;
INIT_STATELESS(Double);
INIT_STATELESS(Float);
INIT_STATELESS(Half);
INIT_STATELESS(Long);
INIT_STATELESS(Int);
INIT_STATELESS(Short);
INIT_STATELESS(Char);
INIT_STATELESS(Byte);
return true;
#undef INIT_STATELESS
}
//
// Callback for python part. Used for additional initialization of python classes
static PyObject * THPModule_initExtension(PyObject *self, PyObject *shm_manager_path)
{
HANDLE_TH_ERRORS
if (!THPUtils_checkString(shm_manager_path)) {
THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!");
return NULL;
}
std::string path = THPUtils_unpackString(shm_manager_path);
libshm_init(path.c_str());
if (!THPModule_loadClasses(self)) return NULL;
if (!THPModule_assignStateless(self)) return NULL;
if (!THPAutograd_initFunctions(self)) return NULL;
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject * THPModule_getNumThreads(PyObject *module)
{
return PyLong_FromLong(THGetNumThreads());
}
static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg)
{
THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "
"but got %s", THPUtils_typename(arg));
THSetNumThreads((int)THPUtils_unpackLong(arg));
Py_RETURN_NONE;
}
bool THPModule_isTensor(PyObject *obj)
{
int result = PySet_Contains(tensor_classes, (PyObject*)Py_TYPE(obj));
if (result == -1)
throw std::logic_error("FATAL: tensor_classes isn't a set!");
return result;
}
PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type)
{
THPDefaultTensorClass = type;
Py_RETURN_NONE;
}
PyObject * THPModule_fromNumpy(PyObject *_unused, PyObject *array)
{
#ifndef WITH_NUMPY
THPUtils_setError("torch was compiled without numpy support");
return NULL;
#else
THPUtils_assert(PyArray_Check(array), "from_numpy expects an np.ndarray "
"but got %s", THPUtils_typename(array));
int type = PyArray_TYPE((PyArrayObject*)array);
if (type == NPY_DOUBLE) {
return PyObject_CallFunctionObjArgs(THPDoubleTensorClass, array, NULL);
} else if (type == NPY_FLOAT) {
return PyObject_CallFunctionObjArgs(THPFloatTensorClass, array, NULL);
} else if (type == NPY_INT64) {
return PyObject_CallFunctionObjArgs(THPLongTensorClass, array, NULL);
} else if (type == NPY_INT32) {
return PyObject_CallFunctionObjArgs(THPIntTensorClass, array, NULL);
} else if (type == NPY_INT16) {
return PyObject_CallFunctionObjArgs(THPShortTensorClass, array, NULL);
} else if (type == NPY_UINT8) {
return PyObject_CallFunctionObjArgs(THPByteTensorClass, array, NULL);
}
THPUtils_setError("can't convert a given np.ndarray to a tensor - it has an "
"invalid type. The only supported types are: double, float, int64, "
"int32, and uint8.");
return NULL;
#endif
}
/**
* STATELESS FUNCTIONS
**/
#define IMPLEMENT_STATELESS(name) \
static PyObject * TH_CONCAT_2(THPModule_, name)(PyObject *_unused, PyObject *args, PyObject *kwargs) \
{ \
PyObject *tensor = THPDefaultTensorClass; \
PyObject *key, *value; \
Py_ssize_t pos = 0; \
for (int i = 0; i < PyTuple_Size(args); i++) { \
PyObject *item = PyTuple_GET_ITEM(args, i); \
if (THPModule_isTensor(item) || THPVariable_Check(item)) { \
tensor = item; \
goto dispatch; \
} \
} \
if (kwargs) { \
while (PyDict_Next(kwargs, &pos, &key, &value)) { \
if (THPModule_isTensor(value) || THPVariable_Check(value)) { \
tensor = value; \
goto dispatch; \
} \
} \
} \
\
dispatch: \
return THPUtils_dispatchStateless(tensor, #name, args, kwargs); \
}
IMPLEMENT_STATELESS(sigmoid)
IMPLEMENT_STATELESS(log)
IMPLEMENT_STATELESS(log1p)
IMPLEMENT_STATELESS(lgamma)
IMPLEMENT_STATELESS(exp)
IMPLEMENT_STATELESS(cos)
IMPLEMENT_STATELESS(acos)
IMPLEMENT_STATELESS(cosh)
IMPLEMENT_STATELESS(sin)
IMPLEMENT_STATELESS(asin)
IMPLEMENT_STATELESS(sinh)
IMPLEMENT_STATELESS(tan)
IMPLEMENT_STATELESS(atan)
IMPLEMENT_STATELESS(tanh)
IMPLEMENT_STATELESS(sqrt)
IMPLEMENT_STATELESS(rsqrt)
IMPLEMENT_STATELESS(ceil)
IMPLEMENT_STATELESS(floor)
IMPLEMENT_STATELESS(round)
IMPLEMENT_STATELESS(abs)
IMPLEMENT_STATELESS(trunc)
IMPLEMENT_STATELESS(frac)
IMPLEMENT_STATELESS(mean)
IMPLEMENT_STATELESS(std)
IMPLEMENT_STATELESS(var)
IMPLEMENT_STATELESS(norm)
IMPLEMENT_STATELESS(reciprocal)
IMPLEMENT_STATELESS(neg)
IMPLEMENT_STATELESS(add)
IMPLEMENT_STATELESS(mul)
IMPLEMENT_STATELESS(div)
IMPLEMENT_STATELESS(fmod)
IMPLEMENT_STATELESS(min)
IMPLEMENT_STATELESS(max)
IMPLEMENT_STATELESS(dot)
IMPLEMENT_STATELESS(sum)
IMPLEMENT_STATELESS(prod)
IMPLEMENT_STATELESS(remainder)
IMPLEMENT_STATELESS(cumsum)
IMPLEMENT_STATELESS(cumprod)
IMPLEMENT_STATELESS(clamp)
IMPLEMENT_STATELESS(equal)
IMPLEMENT_STATELESS(eye)
IMPLEMENT_STATELESS(diag)
IMPLEMENT_STATELESS(numel)
IMPLEMENT_STATELESS(sign)
IMPLEMENT_STATELESS(trace)
IMPLEMENT_STATELESS(tril)
IMPLEMENT_STATELESS(triu)
IMPLEMENT_STATELESS(zero)
IMPLEMENT_STATELESS(kthvalue)
IMPLEMENT_STATELESS(mode)
IMPLEMENT_STATELESS(median)
IMPLEMENT_STATELESS(cross)
IMPLEMENT_STATELESS(sort)
IMPLEMENT_STATELESS(topk)
IMPLEMENT_STATELESS(t)
IMPLEMENT_STATELESS(transpose)
IMPLEMENT_STATELESS(squeeze)
IMPLEMENT_STATELESS(unsqueeze)
IMPLEMENT_STATELESS(renorm)
IMPLEMENT_STATELESS(dist)
IMPLEMENT_STATELESS(linspace)
IMPLEMENT_STATELESS(logspace)
IMPLEMENT_STATELESS(histc)
IMPLEMENT_STATELESS(atan2)
IMPLEMENT_STATELESS(pow)
IMPLEMENT_STATELESS(lerp)
IMPLEMENT_STATELESS(zeros)
IMPLEMENT_STATELESS(zeros_like)
IMPLEMENT_STATELESS(ones)
IMPLEMENT_STATELESS(ones_like)
IMPLEMENT_STATELESS(index_select)
IMPLEMENT_STATELESS(addmm)
IMPLEMENT_STATELESS(addmv)
IMPLEMENT_STATELESS(addr)
IMPLEMENT_STATELESS(ger)
IMPLEMENT_STATELESS(mv)
IMPLEMENT_STATELESS(addbmm)
IMPLEMENT_STATELESS(baddbmm)
IMPLEMENT_STATELESS(addcmul)
IMPLEMENT_STATELESS(addcdiv)
IMPLEMENT_STATELESS(mm)
IMPLEMENT_STATELESS(bmm)
// TODO: this doesn't implement options that return numbers!
IMPLEMENT_STATELESS(multinomial)
IMPLEMENT_STATELESS(normal)
IMPLEMENT_STATELESS(bernoulli)
IMPLEMENT_STATELESS(range)
IMPLEMENT_STATELESS(arange)
IMPLEMENT_STATELESS(gather)
IMPLEMENT_STATELESS(rand)
IMPLEMENT_STATELESS(randn)
IMPLEMENT_STATELESS(masked_select)
IMPLEMENT_STATELESS(gesv)
IMPLEMENT_STATELESS(gels)
IMPLEMENT_STATELESS(trtrs)
IMPLEMENT_STATELESS(symeig)
IMPLEMENT_STATELESS(eig)
IMPLEMENT_STATELESS(svd)
IMPLEMENT_STATELESS(inverse)
IMPLEMENT_STATELESS(potrf)
IMPLEMENT_STATELESS(potrs)
IMPLEMENT_STATELESS(potri)
IMPLEMENT_STATELESS(pstrf)
IMPLEMENT_STATELESS(qr)
IMPLEMENT_STATELESS(geqrf)
IMPLEMENT_STATELESS(orgqr)
IMPLEMENT_STATELESS(ormqr)
IMPLEMENT_STATELESS(btrifact)
IMPLEMENT_STATELESS(btrisolve)
#undef IMPLEMENT_STATELESS
// For logical functions a reverse type search is required (if the first argument
// is a ByteTensor (result), it shouldn't pick it's version).
#define IMPLEMENT_STATELESS_REVERSED(name) \
static PyObject * TH_CONCAT_2(THPModule_, name)(PyObject *_unused, PyObject *args, PyObject *kwargs) \
{ \
PyObject *tensor = THPDefaultTensorClass; \
PyObject *key, *value; \
Py_ssize_t pos = 0; \
for (int i = PyTuple_Size(args)-1; i >= 0; i--) { \
PyObject *item = PyTuple_GET_ITEM(args, i); \
if (THPModule_isTensor(item) || THPVariable_Check(item)) { \
tensor = item; \
goto dispatch; \
} \
} \
if (kwargs) { \
while (PyDict_Next(kwargs, &pos, &key, &value)) { \
if (THPModule_isTensor(value) || THPVariable_Check(value)) { \
tensor = value; \
goto dispatch; \
} \
} \
} \
\
dispatch: \
return THPUtils_dispatchStateless(tensor, #name, args, kwargs); \
}
IMPLEMENT_STATELESS_REVERSED(gt)
IMPLEMENT_STATELESS_REVERSED(lt)
IMPLEMENT_STATELESS_REVERSED(ge)
IMPLEMENT_STATELESS_REVERSED(le)
IMPLEMENT_STATELESS_REVERSED(eq)
IMPLEMENT_STATELESS_REVERSED(ne)
#undef IMPLEMENT_STATELESS
// In nonzero, the first argument might be a LongTensor that will be used
// for indices output, so we should pick a function based on second
// tensor's type.
static PyObject * THPModule_nonzero(PyObject *_unused, PyObject *args, PyObject *kwargs)
{
PyObject *tensor = THPDefaultTensorClass;
if (PyTuple_Size(args) == 1)
tensor = PyTuple_GET_ITEM(args, 0);
else if (PyTuple_Size(args) == 2)
tensor = PyTuple_GET_ITEM(args, 1);
return THPUtils_dispatchStateless(tensor, "nonzero", args, kwargs);
}
static PyObject * THPModule_randperm(PyObject *_unused, PyObject *args, PyObject *kwargs)
{
PyObject *tensor = THPLongTensorClass;
PyObject *out;
if (kwargs && (out = PyDict_GetItemString(kwargs, "out")))
tensor = out;
return THPUtils_dispatchStateless(tensor, "randperm", args, kwargs);
}
static PyObject * THPModule_cat(PyObject *_unused, PyObject *args, PyObject *kwargs)
{
PyObject *tensor = THPDefaultTensorClass;
THPObjectPtr iterator;
THPObjectPtr item;
PyObject *first_arg=nullptr;
if (args && PyTuple_GET_SIZE(args) > 0) {
first_arg = PyTuple_GET_ITEM(args, 0);
} else if (kwargs && PyTuple_GET_ITEM(args, 0)) {
first_arg = PyDict_GetItemString(kwargs, "seq");
}
if (first_arg) {
if (THPModule_isTensor(first_arg)) {
tensor = first_arg;
} else if (PySequence_Check(first_arg)) {
item = PySequence_GetItem(first_arg, 0);
if (item && (THPModule_isTensor(item) || THPVariable_Check(item))) {
tensor = item;
}
}
PyErr_Clear();
}
return THPUtils_dispatchStateless(tensor, "cat", args, kwargs);
}
PyObject *THPModule_safeCall(PyObject *_unused, PyObject *args, PyObject *kwargs)
{
PyObject *result = NULL;
PyObject *args_slice = NULL;
PyThreadState *thread_state = PyThreadState_Get();
Py_ssize_t num_args = args ? PyTuple_Size(args) : 0;
THPUtils_assert(num_args > 0, "expected at least one argument");
try {
args_slice = PyTuple_GetSlice(args, 1, num_args);
result = PyObject_Call(PyTuple_GET_ITEM(args, 0), args_slice, kwargs);
} catch (std::exception &e) {
PyEval_RestoreThread(thread_state);
Py_DECREF(args_slice);
PyErr_SetString(THPException_FatalError, e.what());
Py_LeaveRecursiveCall();
}
Py_DECREF(args_slice);
return result;
}
PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args)
{
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
static std::vector<std::string> all_docs;
PyObject *obj;
PyObject *doc_obj;
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
return NULL;
}
const char* doc_str = "<invalid string>";
if (THPUtils_checkString(doc_obj)) {
all_docs.push_back(THPUtils_unpackString(doc_obj));
doc_str = all_docs.back().c_str();
}
if (Py_TYPE(obj) == &PyCFunction_Type) {
PyCFunctionObject* f = (PyCFunctionObject *)obj;
if (f->m_ml->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"function '%s' already has a docstring", f->m_ml->ml_name);
}
f->m_ml->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
PyMethodDescrObject* m = (PyMethodDescrObject *)obj;
if (m->d_method->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"method '%s' already has a docstring", m->d_method->ml_name);
}
m->d_method->ml_doc = doc_str;
} else {
return PyErr_Format(PyExc_TypeError,
"don't know how to add docstring to type '%s'", Py_TYPE(obj)->tp_name);
}
Py_RETURN_NONE;
}
PyObject *THPModule_inferSize(PyObject *_unused, PyObject *args)
{
HANDLE_TH_ERRORS
Py_ssize_t num_args = args ? PyTuple_Size(args) : 0;
THPUtils_assert(num_args == 2, "expected exactly 2 arguments");
PyObject *arg1 = PyTuple_GET_ITEM(args, 0);
THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1");
PyObject *arg2 = PyTuple_GET_ITEM(args, 1);
THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2");
THLongStoragePtr size1_guard = THPUtils_unpackSize(arg1);
THLongStorage *size1 = size1_guard.get();
THLongStoragePtr size2_guard = THPUtils_unpackSize(arg2);
THLongStorage *size2 = size2_guard.get();
THLongStoragePtr sizes_guard(THLongStorage_new());
THLongStorage *sizes = sizes_guard.get();
char error_buffer[1024];
int ret = THLongStorage_inferSize2(sizes, size1->data, size1->size, size2->data, size2->size, error_buffer, 1024);
THPUtils_assert(ret == 0, error_buffer);
return THPSize_New(sizes->size, sizes->data);
END_HANDLE_TH_ERRORS
}
static PyObject *THPModule_setBackcompatBroadcastWarn(PyObject *module, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "set_backcompat_broadcast_warn expects a bool, "
"but got %s", THPUtils_typename(arg));
setBackCompatBroadcastWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject *THPModule_getBackcompatBroadcastWarn(PyObject *module)
{
if (getBackCompatBroadcastWarn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
static PyObject *THPModule_setBackcompatKeepdimWarn(PyObject *module, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "set_backcompat_keepdim_warn expects a bool, "
"but got %s", THPUtils_typename(arg));
setBackCompatKeepdimWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject *THPModule_getBackcompatKeepdimWarn(PyObject *module)
{
if (getBackCompatKeepdimWarn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_hasDistributed(PyObject *_unused)
{
#ifdef WITH_DISTRIBUTED
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
}
#ifdef WITH_CUDA
extern PyObject * THCPModule_initExtension(PyObject *self);
extern PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg);
extern PyObject * THCPModule_getDevice_wrap(PyObject *self);
extern PyObject * THCPModule_getDeviceCount_wrap(PyObject *self);
extern PyObject * THCPModule_getDeviceName_wrap(PyObject *self, PyObject *arg);
extern PyObject * THCPModule_getCurrentStream_wrap(PyObject *self);
extern PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self);
extern PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *stream);
extern PyObject * THCPModule_getDriverVersion(PyObject *self);
extern PyObject * THCPModule_isDriverSufficient(PyObject *self);
extern PyObject * THCPModule_getRNGState(PyObject *_unused);
extern PyObject * THCPModule_setRNGState(PyObject *_unused, PyObject *_new_rng_state);
extern PyObject * THCPModule_manualSeed(PyObject *_unused, PyObject *seed);
extern PyObject * THCPModule_manualSeedAll(PyObject *_unused, PyObject *seed);
extern PyObject * THCPModule_seed(PyObject *_unused);
extern PyObject * THCPModule_seedAll(PyObject *_unused);
extern PyObject * THCPModule_initialSeed(PyObject *_unused);
extern PyObject * THCPModule_cudaHostAllocator(PyObject *_unused);
extern PyObject * THCPModule_cudaSynchronize(PyObject *_unused);
extern PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles);
extern PyObject * THCPModule_cudaLockMutex(PyObject *module);
extern PyObject * THCPModule_cudaUnlockMutex(PyObject *module);
extern PyObject * THCSPModule_initExtension(PyObject *self);
#endif
static PyMethodDef TorchMethods[] = {
{"_initExtension", (PyCFunction)THPModule_initExtension, METH_O, NULL},
{"_autograd_init", (PyCFunction)THPAutograd_initExtension, METH_NOARGS, NULL},
{"_tracer_enter", (PyCFunction)THPTracer_enter, METH_VARARGS, NULL},
{"_tracer_exit", (PyCFunction)THPTracer_exit, METH_VARARGS, NULL},
{"_add_docstr", (PyCFunction)THPModule_addDocStr, METH_VARARGS, NULL},
{"_sparse_init", (PyCFunction)THSPModule_initExtension, METH_NOARGS, NULL},
{"_init_names", (PyCFunction)THPModule_initNames, METH_O, NULL},
{"_has_distributed",(PyCFunction)THPModule_hasDistributed, METH_NOARGS, NULL},
#ifdef WITH_CUDA
{"_cuda_init", (PyCFunction)THCPModule_initExtension, METH_NOARGS, NULL},
{"_cuda_setDevice", (PyCFunction)THCPModule_setDevice_wrap, METH_O, NULL},
{"_cuda_getDevice", (PyCFunction)THCPModule_getDevice_wrap, METH_NOARGS, NULL},
{"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, NULL},
{"_cuda_getDeviceName", (PyCFunction)THCPModule_getDeviceName_wrap, METH_O, NULL},
{"_cuda_getCurrentStream", (PyCFunction)THCPModule_getCurrentStream_wrap, METH_NOARGS, NULL},
{"_cuda_getCurrentBlasHandle", (PyCFunction)THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, NULL},
{"_cuda_setStream", (PyCFunction)THCPModule_setStream_wrap, METH_O, NULL},
{"_cuda_isDriverSufficient", (PyCFunction)THCPModule_isDriverSufficient, METH_NOARGS, NULL},
{"_cuda_getDriverVersion", (PyCFunction)THCPModule_getDriverVersion, METH_NOARGS, NULL},
{"_cuda_getRNGState", (PyCFunction)THCPModule_getRNGState, METH_NOARGS, NULL},
{"_cuda_setRNGState", (PyCFunction)THCPModule_setRNGState, METH_O, NULL},
{"_cuda_manualSeed", (PyCFunction)THCPModule_manualSeed, METH_O, NULL},
{"_cuda_manualSeedAll", (PyCFunction)THCPModule_manualSeedAll, METH_O, NULL},
{"_cuda_seed", (PyCFunction)THCPModule_seed, METH_NOARGS, NULL},
{"_cuda_seedAll", (PyCFunction)THCPModule_seedAll, METH_NOARGS, NULL},
{"_cuda_initialSeed", (PyCFunction)THCPModule_initialSeed, METH_NOARGS, NULL},
{"_cuda_cudaHostAllocator", (PyCFunction)THCPModule_cudaHostAllocator, METH_NOARGS, NULL},
{"_cuda_synchronize", (PyCFunction)THCPModule_cudaSynchronize, METH_NOARGS, NULL},
{"_cuda_sleep", (PyCFunction)THCPModule_cudaSleep, METH_O, NULL},
{"_cuda_sparse_init", (PyCFunction)THCSPModule_initExtension, METH_NOARGS, NULL},
{"_cuda_lock_mutex", (PyCFunction)THCPModule_cudaLockMutex, METH_NOARGS, NULL},
{"_cuda_unlock_mutex", (PyCFunction)THCPModule_cudaUnlockMutex, METH_NOARGS, NULL},
#endif
{"_safe_call", (PyCFunction)THPModule_safeCall, METH_VARARGS | METH_KEYWORDS, NULL},
{"_set_default_tensor_type", (PyCFunction)THPModule_setDefaultTensorType, METH_O, NULL},
{"_infer_size", (PyCFunction)THPModule_inferSize, METH_VARARGS, NULL},
{"_set_backcompat_broadcast_warn", (PyCFunction)THPModule_setBackcompatBroadcastWarn, METH_O, NULL},
{"_get_backcompat_broadcast_warn", (PyCFunction)THPModule_getBackcompatBroadcastWarn, METH_NOARGS, NULL},
{"_set_backcompat_keepdim_warn", (PyCFunction)THPModule_setBackcompatKeepdimWarn, METH_O, NULL},
{"_get_backcompat_keepdim_warn", (PyCFunction)THPModule_getBackcompatKeepdimWarn, METH_NOARGS, NULL},
{"get_num_threads", (PyCFunction)THPModule_getNumThreads, METH_NOARGS, NULL},
{"set_num_threads", (PyCFunction)THPModule_setNumThreads, METH_O, NULL},
{"from_numpy", (PyCFunction)THPModule_fromNumpy, METH_O, NULL},
{"sigmoid", (PyCFunction)THPModule_sigmoid, METH_VARARGS | METH_KEYWORDS, NULL},
{"log", (PyCFunction)THPModule_log, METH_VARARGS | METH_KEYWORDS, NULL},
{"log1p", (PyCFunction)THPModule_log1p, METH_VARARGS | METH_KEYWORDS, NULL},
{"lgamma", (PyCFunction)THPModule_lgamma, METH_VARARGS | METH_KEYWORDS, NULL},
{"exp", (PyCFunction)THPModule_exp, METH_VARARGS | METH_KEYWORDS, NULL},
{"cos", (PyCFunction)THPModule_cos, METH_VARARGS | METH_KEYWORDS, NULL},
{"acos", (PyCFunction)THPModule_acos, METH_VARARGS | METH_KEYWORDS, NULL},
{"cosh", (PyCFunction)THPModule_cosh, METH_VARARGS | METH_KEYWORDS, NULL},
{"sin", (PyCFunction)THPModule_sin, METH_VARARGS | METH_KEYWORDS, NULL},
{"asin", (PyCFunction)THPModule_asin, METH_VARARGS | METH_KEYWORDS, NULL},
{"sinh", (PyCFunction)THPModule_sinh, METH_VARARGS | METH_KEYWORDS, NULL},
{"tan", (PyCFunction)THPModule_tan, METH_VARARGS | METH_KEYWORDS, NULL},
{"atan", (PyCFunction)THPModule_atan, METH_VARARGS | METH_KEYWORDS, NULL},
{"tanh", (PyCFunction)THPModule_tanh, METH_VARARGS | METH_KEYWORDS, NULL},
{"sqrt", (PyCFunction)THPModule_sqrt, METH_VARARGS | METH_KEYWORDS, NULL},
{"rsqrt", (PyCFunction)THPModule_rsqrt, METH_VARARGS | METH_KEYWORDS, NULL},
{"ceil", (PyCFunction)THPModule_ceil, METH_VARARGS | METH_KEYWORDS, NULL},
{"floor", (PyCFunction)THPModule_floor, METH_VARARGS | METH_KEYWORDS, NULL},
{"round", (PyCFunction)THPModule_round, METH_VARARGS | METH_KEYWORDS, NULL},
{"abs", (PyCFunction)THPModule_abs, METH_VARARGS | METH_KEYWORDS, NULL},
{"trunc", (PyCFunction)THPModule_trunc, METH_VARARGS | METH_KEYWORDS, NULL},
{"frac", (PyCFunction)THPModule_frac, METH_VARARGS | METH_KEYWORDS, NULL},
{"mean", (PyCFunction)THPModule_mean, METH_VARARGS | METH_KEYWORDS, NULL},
{"std", (PyCFunction)THPModule_std, METH_VARARGS | METH_KEYWORDS, NULL},
{"var", (PyCFunction)THPModule_var, METH_VARARGS | METH_KEYWORDS, NULL},
{"norm", (PyCFunction)THPModule_norm, METH_VARARGS | METH_KEYWORDS, NULL},
{"reciprocal", (PyCFunction)THPModule_reciprocal, METH_VARARGS | METH_KEYWORDS, NULL},
{"neg", (PyCFunction)THPModule_neg, METH_VARARGS | METH_KEYWORDS, NULL},
{"add", (PyCFunction)THPModule_add, METH_VARARGS | METH_KEYWORDS, NULL},
{"mul", (PyCFunction)THPModule_mul, METH_VARARGS | METH_KEYWORDS, NULL},
{"div", (PyCFunction)THPModule_div, METH_VARARGS | METH_KEYWORDS, NULL},
{"fmod", (PyCFunction)THPModule_fmod, METH_VARARGS | METH_KEYWORDS, NULL},
{"min", (PyCFunction)THPModule_min, METH_VARARGS | METH_KEYWORDS, NULL},
{"max", (PyCFunction)THPModule_max, METH_VARARGS | METH_KEYWORDS, NULL},
{"dot", (PyCFunction)THPModule_dot, METH_VARARGS | METH_KEYWORDS, NULL},
{"sum", (PyCFunction)THPModule_sum, METH_VARARGS | METH_KEYWORDS, NULL},
{"prod", (PyCFunction)THPModule_prod, METH_VARARGS | METH_KEYWORDS, NULL},
{"remainder", (PyCFunction)THPModule_remainder, METH_VARARGS | METH_KEYWORDS, NULL},
{"cumsum", (PyCFunction)THPModule_cumsum, METH_VARARGS | METH_KEYWORDS, NULL},
{"cumprod", (PyCFunction)THPModule_cumprod, METH_VARARGS | METH_KEYWORDS, NULL},
{"clamp", (PyCFunction)THPModule_clamp, METH_VARARGS | METH_KEYWORDS, NULL},
{"equal", (PyCFunction)THPModule_equal, METH_VARARGS | METH_KEYWORDS, NULL},
{"eye", (PyCFunction)THPModule_eye, METH_VARARGS | METH_KEYWORDS, NULL},
{"diag", (PyCFunction)THPModule_diag, METH_VARARGS | METH_KEYWORDS, NULL},
{"numel", (PyCFunction)THPModule_numel, METH_VARARGS | METH_KEYWORDS, NULL},
{"sign", (PyCFunction)THPModule_sign, METH_VARARGS | METH_KEYWORDS, NULL},
{"trace", (PyCFunction)THPModule_trace, METH_VARARGS | METH_KEYWORDS, NULL},
{"tril", (PyCFunction)THPModule_tril, METH_VARARGS | METH_KEYWORDS, NULL},
{"triu", (PyCFunction)THPModule_triu, METH_VARARGS | METH_KEYWORDS, NULL},
{"zero", (PyCFunction)THPModule_zero, METH_VARARGS | METH_KEYWORDS, NULL},
{"gt", (PyCFunction)THPModule_gt, METH_VARARGS | METH_KEYWORDS, NULL},
{"lt", (PyCFunction)THPModule_lt, METH_VARARGS | METH_KEYWORDS, NULL},
{"ge", (PyCFunction)THPModule_ge, METH_VARARGS | METH_KEYWORDS, NULL},
{"le", (PyCFunction)THPModule_le, METH_VARARGS | METH_KEYWORDS, NULL},
{"eq", (PyCFunction)THPModule_eq, METH_VARARGS | METH_KEYWORDS, NULL},
{"ne", (PyCFunction)THPModule_ne, METH_VARARGS | METH_KEYWORDS, NULL},
{"kthvalue", (PyCFunction)THPModule_kthvalue, METH_VARARGS | METH_KEYWORDS, NULL},
{"mode", (PyCFunction)THPModule_mode, METH_VARARGS | METH_KEYWORDS, NULL},
{"median", (PyCFunction)THPModule_median, METH_VARARGS | METH_KEYWORDS, NULL},
{"cross", (PyCFunction)THPModule_cross, METH_VARARGS | METH_KEYWORDS, NULL},
{"sort", (PyCFunction)THPModule_sort, METH_VARARGS | METH_KEYWORDS, NULL},
{"topk", (PyCFunction)THPModule_topk, METH_VARARGS | METH_KEYWORDS, NULL},
{"t", (PyCFunction)THPModule_t, METH_VARARGS | METH_KEYWORDS, NULL},
{"transpose", (PyCFunction)THPModule_transpose, METH_VARARGS | METH_KEYWORDS, NULL},
{"squeeze", (PyCFunction)THPModule_squeeze, METH_VARARGS | METH_KEYWORDS, NULL},
{"unsqueeze", (PyCFunction)THPModule_unsqueeze, METH_VARARGS | METH_KEYWORDS, NULL},
{"nonzero", (PyCFunction)THPModule_nonzero, METH_VARARGS | METH_KEYWORDS, NULL},
{"renorm", (PyCFunction)THPModule_renorm, METH_VARARGS | METH_KEYWORDS, NULL},
{"dist", (PyCFunction)THPModule_dist, METH_VARARGS | METH_KEYWORDS, NULL},
{"linspace", (PyCFunction)THPModule_linspace, METH_VARARGS | METH_KEYWORDS, NULL},
{"logspace", (PyCFunction)THPModule_logspace, METH_VARARGS | METH_KEYWORDS, NULL},
{"histc", (PyCFunction)THPModule_histc, METH_VARARGS | METH_KEYWORDS, NULL},
{"atan2", (PyCFunction)THPModule_atan2, METH_VARARGS | METH_KEYWORDS, NULL},
{"pow", (PyCFunction)THPModule_pow, METH_VARARGS | METH_KEYWORDS, NULL},
{"lerp", (PyCFunction)THPModule_lerp, METH_VARARGS | METH_KEYWORDS, NULL},
{"zeros", (PyCFunction)THPModule_zeros, METH_VARARGS | METH_KEYWORDS, NULL},
{"zeros_like", (PyCFunction)THPModule_zeros_like, METH_VARARGS | METH_KEYWORDS, NULL},
{"ones", (PyCFunction)THPModule_ones, METH_VARARGS | METH_KEYWORDS, NULL},
{"ones_like", (PyCFunction)THPModule_ones_like, METH_VARARGS | METH_KEYWORDS, NULL},
{"index_select", (PyCFunction)THPModule_index_select, METH_VARARGS | METH_KEYWORDS, NULL},
{"addmm", (PyCFunction)THPModule_addmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"addmv", (PyCFunction)THPModule_addmv, METH_VARARGS | METH_KEYWORDS, NULL},
{"addr", (PyCFunction)THPModule_addr, METH_VARARGS | METH_KEYWORDS, NULL},
{"ger", (PyCFunction)THPModule_ger, METH_VARARGS | METH_KEYWORDS, NULL},
{"mv", (PyCFunction)THPModule_mv, METH_VARARGS | METH_KEYWORDS, NULL},
{"addbmm", (PyCFunction)THPModule_addbmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"baddbmm", (PyCFunction)THPModule_baddbmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"addcmul", (PyCFunction)THPModule_addcmul, METH_VARARGS | METH_KEYWORDS, NULL},
{"addcdiv", (PyCFunction)THPModule_addcdiv, METH_VARARGS | METH_KEYWORDS, NULL},
{"mm", (PyCFunction)THPModule_mm, METH_VARARGS | METH_KEYWORDS, NULL},
{"bmm", (PyCFunction)THPModule_bmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"multinomial", (PyCFunction)THPModule_multinomial, METH_VARARGS | METH_KEYWORDS, NULL},
{"normal", (PyCFunction)THPModule_normal, METH_VARARGS | METH_KEYWORDS, NULL},
{"bernoulli", (PyCFunction)THPModule_bernoulli, METH_VARARGS | METH_KEYWORDS, NULL},
{"rand", (PyCFunction)THPModule_rand, METH_VARARGS | METH_KEYWORDS, NULL},
{"randn", (PyCFunction)THPModule_randn, METH_VARARGS | METH_KEYWORDS, NULL},
{"randperm", (PyCFunction)THPModule_randperm, METH_VARARGS | METH_KEYWORDS, NULL},
{"range", (PyCFunction)THPModule_range, METH_VARARGS | METH_KEYWORDS, NULL},
{"arange", (PyCFunction)THPModule_arange, METH_VARARGS | METH_KEYWORDS, NULL},
{"gather", (PyCFunction)THPModule_gather, METH_VARARGS | METH_KEYWORDS, NULL},
{"cat", (PyCFunction)THPModule_cat, METH_VARARGS | METH_KEYWORDS, NULL},
{"masked_select", (PyCFunction)THPModule_masked_select, METH_VARARGS | METH_KEYWORDS, NULL},
{"gesv", (PyCFunction)THPModule_gesv, METH_VARARGS | METH_KEYWORDS, NULL},
{"gels", (PyCFunction)THPModule_gels, METH_VARARGS | METH_KEYWORDS, NULL},
{"trtrs", (PyCFunction)THPModule_trtrs, METH_VARARGS | METH_KEYWORDS, NULL},
{"symeig", (PyCFunction)THPModule_symeig, METH_VARARGS | METH_KEYWORDS, NULL},
{"eig", (PyCFunction)THPModule_eig, METH_VARARGS | METH_KEYWORDS, NULL},
{"svd", (PyCFunction)THPModule_svd, METH_VARARGS | METH_KEYWORDS, NULL},
{"inverse", (PyCFunction)THPModule_inverse, METH_VARARGS | METH_KEYWORDS, NULL},
{"potrf", (PyCFunction)THPModule_potrf, METH_VARARGS | METH_KEYWORDS, NULL},
{"potrs", (PyCFunction)THPModule_potrs, METH_VARARGS | METH_KEYWORDS, NULL},
{"potri", (PyCFunction)THPModule_potri, METH_VARARGS | METH_KEYWORDS, NULL},
{"pstrf", (PyCFunction)THPModule_pstrf, METH_VARARGS | METH_KEYWORDS, NULL},
{"qr", (PyCFunction)THPModule_qr, METH_VARARGS | METH_KEYWORDS, NULL},
{"geqrf", (PyCFunction)THPModule_geqrf, METH_VARARGS | METH_KEYWORDS, NULL},
{"orgqr", (PyCFunction)THPModule_orgqr, METH_VARARGS | METH_KEYWORDS, NULL},
{"ormqr", (PyCFunction)THPModule_ormqr, METH_VARARGS | METH_KEYWORDS, NULL},
{"btrifact", (PyCFunction)THPModule_btrifact, METH_VARARGS | METH_KEYWORDS, NULL},
{"btrisolve", (PyCFunction)THPModule_btrisolve, METH_VARARGS | METH_KEYWORDS, NULL},
// Sparse functions
{"smm", (PyCFunction)THSPModule_sspmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"saddmm", (PyCFunction)THSPModule_sspaddmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"dsmm", (PyCFunction)THSPModule_spmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"hsmm", (PyCFunction)THSPModule_hspmm, METH_VARARGS | METH_KEYWORDS, NULL},
{NULL, NULL, 0, NULL}
};
bool THCPDoubleStorage_init(PyObject *module);
bool THCPFloatStorage_init(PyObject *module);
bool THCPHalfStorage_init(PyObject *module);
bool THCPLongStorage_init(PyObject *module);
bool THCPIntStorage_init(PyObject *module);
bool THCPShortStorage_init(PyObject *module);
bool THCPCharStorage_init(PyObject *module);
bool THCPByteStorage_init(PyObject *module);
bool THCPDoubleTensor_init(PyObject *module);
bool THCPFloatTensor_init(PyObject *module);
bool THCPHalfTensor_init(PyObject *module);
bool THCPLongTensor_init(PyObject *module);
bool THCPIntTensor_init(PyObject *module);
bool THCPShortTensor_init(PyObject *module);
bool THCPCharTensor_init(PyObject *module);
bool THCPByteTensor_init(PyObject *module);
bool THCPStream_init(PyObject *module);
bool THCSPDoubleTensor_init(PyObject *module);
bool THCSPFloatTensor_init(PyObject *module);
bool THCSPHalfTensor_init(PyObject *module);
bool THCSPLongTensor_init(PyObject *module);
bool THCSPIntTensor_init(PyObject *module);
bool THCSPShortTensor_init(PyObject *module);
bool THCSPCharTensor_init(PyObject *module);
bool THCSPByteTensor_init(PyObject *module);
bool THDPDoubleStorage_init(PyObject *module);
bool THDPFloatStorage_init(PyObject *module);
//bool THDPHalfStorage_init(PyObject *module);
bool THDPLongStorage_init(PyObject *module);
bool THDPIntStorage_init(PyObject *module);
bool THDPShortStorage_init(PyObject *module);
bool THDPCharStorage_init(PyObject *module);
bool THDPByteStorage_init(PyObject *module);
bool THDPDoubleTensor_init(PyObject *module);
bool THDPFloatTensor_init(PyObject *module);
//bool THDPHalfTensor_init(PyObject *module);
bool THDPLongTensor_init(PyObject *module);
bool THDPIntTensor_init(PyObject *module);
bool THDPShortTensor_init(PyObject *module);
bool THDPCharTensor_init(PyObject *module);
bool THDPByteTensor_init(PyObject *module);
static std::vector<PyMethodDef> methods;
#ifdef WITH_DISTRIBUTED
PyMethodDef* THDPModule_methods();
#endif
#if PY_MAJOR_VERSION == 2
PyMODINIT_FUNC init_C()
#else
PyMODINIT_FUNC PyInit__C()
#endif
{
THInferNumThreads();
#if PY_MAJOR_VERSION == 2
#define ASSERT_TRUE(cmd) if (!(cmd)) {PyErr_SetString(PyExc_ImportError, "initialization error"); return;}
#else
#define ASSERT_TRUE(cmd) if (!(cmd)) return NULL
#endif
THPUtils_addPyMethodDefs(methods, TorchMethods);
#ifdef WITH_CUDNN
THPUtils_addPyMethodDefs(methods, THCUDNN_methods());
#endif
#ifdef WITH_DISTRIBUTED
THPUtils_addPyMethodDefs(methods, THDPModule_methods());
#endif
#if PY_MAJOR_VERSION == 2
ASSERT_TRUE(module = Py_InitModule("torch._C", methods.data()));
#else
static struct PyModuleDef torchmodule = {
PyModuleDef_HEAD_INIT,
"torch._C",
NULL,
-1,
methods.data()
};
ASSERT_TRUE(module = PyModule_Create(&torchmodule));
#endif
ASSERT_TRUE(THPWrapper_init(module));
ASSERT_TRUE(THPGenerator_init(module));
ASSERT_TRUE(THPException_init(module));
ASSERT_TRUE(THPSize_init(module));
ASSERT_TRUE(THPVariable_initModule(module));
ASSERT_TRUE(THPFunction_initModule(module));
ASSERT_TRUE(THPIR_initModule(module));
ASSERT_TRUE(THPEngine_initModule(module));
ASSERT_TRUE(THPDoubleStorage_init(module));
ASSERT_TRUE(THPFloatStorage_init(module));
ASSERT_TRUE(THPHalfStorage_init(module));
ASSERT_TRUE(THPLongStorage_init(module));
ASSERT_TRUE(THPIntStorage_init(module));
ASSERT_TRUE(THPShortStorage_init(module));
ASSERT_TRUE(THPCharStorage_init(module));
ASSERT_TRUE(THPByteStorage_init(module));
ASSERT_TRUE(THPDoubleTensor_init(module));
ASSERT_TRUE(THPFloatTensor_init(module));
ASSERT_TRUE(THPHalfTensor_init(module));
ASSERT_TRUE(THPLongTensor_init(module));
ASSERT_TRUE(THPIntTensor_init(module));
ASSERT_TRUE(THPShortTensor_init(module));
ASSERT_TRUE(THPCharTensor_init(module));
ASSERT_TRUE(THPByteTensor_init(module));
ASSERT_TRUE(THSPDoubleTensor_init(module));
ASSERT_TRUE(THSPFloatTensor_init(module));
ASSERT_TRUE(THSPLongTensor_init(module));
ASSERT_TRUE(THSPIntTensor_init(module));
ASSERT_TRUE(THSPShortTensor_init(module));
ASSERT_TRUE(THSPCharTensor_init(module));
ASSERT_TRUE(THSPByteTensor_init(module));
#ifdef WITH_CUDA
// This will only initialise base classes and attach them to library namespace
// They won't be ready for real usage until importing cuda module, that will
// complete the process (but it defines Python classes before calling back into
// C, so these lines have to execute first)..
ASSERT_TRUE(THCPDoubleStorage_init(module));
ASSERT_TRUE(THCPFloatStorage_init(module));
ASSERT_TRUE(THCPHalfStorage_init(module));
ASSERT_TRUE(THCPLongStorage_init(module));
ASSERT_TRUE(THCPIntStorage_init(module));
ASSERT_TRUE(THCPShortStorage_init(module));
ASSERT_TRUE(THCPCharStorage_init(module));
ASSERT_TRUE(THCPByteStorage_init(module));
ASSERT_TRUE(THCPDoubleTensor_init(module));
ASSERT_TRUE(THCPFloatTensor_init(module));
ASSERT_TRUE(THCPHalfTensor_init(module));
ASSERT_TRUE(THCPLongTensor_init(module));
ASSERT_TRUE(THCPIntTensor_init(module));
ASSERT_TRUE(THCPShortTensor_init(module));
ASSERT_TRUE(THCPCharTensor_init(module));
ASSERT_TRUE(THCPByteTensor_init(module));
ASSERT_TRUE(THCPStream_init(module));
ASSERT_TRUE(THCSPDoubleTensor_init(module));
ASSERT_TRUE(THCSPFloatTensor_init(module));
ASSERT_TRUE(THCSPHalfTensor_init(module));
ASSERT_TRUE(THCSPLongTensor_init(module));
ASSERT_TRUE(THCSPIntTensor_init(module));
ASSERT_TRUE(THCSPShortTensor_init(module));
ASSERT_TRUE(THCSPCharTensor_init(module));
ASSERT_TRUE(THCSPByteTensor_init(module));
#endif
#ifdef WITH_CUDNN
PyObject *has_cudnn = Py_True;
#else
PyObject *has_cudnn = Py_False;
#endif
Py_INCREF(has_cudnn);
ASSERT_TRUE(PyModule_AddObject(module, "has_cudnn", has_cudnn) == 0);
#ifdef WITH_DISTRIBUTED_MW
// See comment on CUDA objects
ASSERT_TRUE(THDPDoubleStorage_init(module));
ASSERT_TRUE(THDPFloatStorage_init(module));
//ASSERT_TRUE(THDPHalfStorage_init(module));
ASSERT_TRUE(THDPLongStorage_init(module));
ASSERT_TRUE(THDPIntStorage_init(module));
ASSERT_TRUE(THDPShortStorage_init(module));
ASSERT_TRUE(THDPCharStorage_init(module));
ASSERT_TRUE(THDPByteStorage_init(module));
ASSERT_TRUE(THDPDoubleTensor_init(module));
ASSERT_TRUE(THDPFloatTensor_init(module));
//ASSERT_TRUE(THDPHalfTensor_init(module));
ASSERT_TRUE(THDPLongTensor_init(module));
ASSERT_TRUE(THDPIntTensor_init(module));
ASSERT_TRUE(THDPShortTensor_init(module));
ASSERT_TRUE(THDPCharTensor_init(module));
ASSERT_TRUE(THDPByteTensor_init(module));
#endif
THPDefaultGenerator = (THPGenerator*)THPGenerator_New();
ASSERT_TRUE(THPDefaultGenerator != nullptr);
ASSERT_TRUE(PyModule_AddObject(module, "default_generator", (PyObject*)THPDefaultGenerator) == 0);
// force ATen to initialize because it handles
// setting up TH Errors so that they throw C++ exceptions
at::init();
#ifdef WITH_NUMPY
import_array();
#endif
#if PY_MAJOR_VERSION == 2
#else
return module;
#endif
}