pytorch/torch/distributions/binomial.py
Till Hoffmann 40576bceaf Add mode property to distributions. (#76690)
This PR fixes #69466 and introduces some other minor changes. Tests are somewhat more involved because a reference implementation in `scipy` is not available; tests proceed differently for discrete and continuous distributions.

For continuous distributions, we evaluate the gradient of the `log_prob` at the mode. Tests pass if the gradient is zero OR (the mode is at the boundary of the support of the distribution AND the `log_prob` decreases as we move away from the boundary to the interior of the support).

For discrete distributions, the notion of a gradient is not well defined. We thus "look" ahead and behind one step (e.g. if the mode of a Poisson distribution is 9, we consider 8 and 10). If the step ahead/behind is still within the support of the distribution, we assert that the `log_prob` is smaller than at the mode.

For one-hot encoded distributions (currently just `OneHotCategorical`), we evaluate the underlying mode (i.e. encoded as an integral tensor), "advance" by one label to get another sample that should have lower probability using `other = (mode + 1) % event_size` and re-encode as one-hot. The resultant `other` sample should have lower probability than the mode.

Furthermore, Gamma, half Cauchy, and half normal distributions have their support changed from positive to nonnegative. This change is necessary because the mode of the "half" distributions is zero, and the mode of the gamma distribution is zero for `concentration <= 1`.

cc @fritzo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76690
Approved by: https://github.com/neerajprad
2022-05-11 18:26:56 +00:00

136 lines
5.5 KiB
Python

import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
def _clamp_by_zero(x):
# works like clamp(x, min=0) but has grad at 0 is 0.5
return (x.clamp(min=0) + x - x.clamp(max=0)) / 2
class Binomial(Distribution):
r"""
Creates a Binomial distribution parameterized by :attr:`total_count` and
either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
broadcastable with :attr:`probs`/:attr:`logits`.
Example::
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
>>> x = m.sample()
tensor([ 0., 22., 71., 100.])
>>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
>>> x = m.sample()
tensor([[ 4., 5.],
[ 7., 6.]])
Args:
total_count (int or Tensor): number of Bernoulli trials
probs (Tensor): Event probabilities
logits (Tensor): Event log-odds
"""
arg_constraints = {'total_count': constraints.nonnegative_integer,
'probs': constraints.unit_interval,
'logits': constraints.real}
has_enumerate_support = True
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
if (probs is None) == (logits is None):
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
if probs is not None:
self.total_count, self.probs, = broadcast_all(total_count, probs)
self.total_count = self.total_count.type_as(self.probs)
else:
self.total_count, self.logits, = broadcast_all(total_count, logits)
self.total_count = self.total_count.type_as(self.logits)
self._param = self.probs if probs is not None else self.logits
batch_shape = self._param.size()
super(Binomial, self).__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Binomial, _instance)
batch_shape = torch.Size(batch_shape)
new.total_count = self.total_count.expand(batch_shape)
if 'probs' in self.__dict__:
new.probs = self.probs.expand(batch_shape)
new._param = new.probs
if 'logits' in self.__dict__:
new.logits = self.logits.expand(batch_shape)
new._param = new.logits
super(Binomial, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._param.new(*args, **kwargs)
@constraints.dependent_property(is_discrete=True, event_dim=0)
def support(self):
return constraints.integer_interval(0, self.total_count)
@property
def mean(self):
return self.total_count * self.probs
@property
def mode(self):
return ((self.total_count + 1) * self.probs).floor().clamp(max=self.total_count)
@property
def variance(self):
return self.total_count * self.probs * (1 - self.probs)
@lazy_property
def logits(self):
return probs_to_logits(self.probs, is_binary=True)
@lazy_property
def probs(self):
return logits_to_probs(self.logits, is_binary=True)
@property
def param_shape(self):
return self._param.size()
def sample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
with torch.no_grad():
return torch.binomial(self.total_count.expand(shape), self.probs.expand(shape))
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
log_factorial_n = torch.lgamma(self.total_count + 1)
log_factorial_k = torch.lgamma(value + 1)
log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
# k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p)
# (case logit < 0) = k * logit - n * log1p(e^logit)
# (case logit > 0) = k * logit - n * (log(p) - log(1 - p)) + n * log(p)
# = k * logit - n * logit - n * log1p(e^-logit)
# (merge two cases) = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|)
normalize_term = (self.total_count * _clamp_by_zero(self.logits)
+ self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits)))
- log_factorial_n)
return value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term
def entropy(self):
total_count = int(self.total_count.max())
if not self.total_count.min() == total_count:
raise NotImplementedError("Inhomogeneous total count not supported by `entropy`.")
log_prob = self.log_prob(self.enumerate_support(False))
return -(torch.exp(log_prob) * log_prob).sum(0)
def enumerate_support(self, expand=True):
total_count = int(self.total_count.max())
if not self.total_count.min() == total_count:
raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
values = values.view((-1,) + (1,) * len(self._batch_shape))
if expand:
values = values.expand((-1,) + self._batch_shape)
return values