mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
In addition, enable testing masked reductions in sparse compressed consistency check. Pull Request resolved: https://github.com/pytorch/pytorch/pull/78173 Approved by: https://github.com/cpuhrsch
2324 lines
113 KiB
Python
2324 lines
113 KiB
Python
# Owner(s): ["module: sparse"]
|
|
|
|
import torch
|
|
import random
|
|
import itertools
|
|
import unittest
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC
|
|
from torch.testing._internal.common_utils import \
|
|
(TEST_WITH_ROCM, TEST_SCIPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize,
|
|
subtest)
|
|
from torch.testing._internal.common_device_type import \
|
|
(ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoCusparseGeneric,
|
|
precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse)
|
|
from torch.testing._internal.common_methods_invocations import \
|
|
(op_db, sparse_csr_unary_ufuncs, ReductionOpInfo)
|
|
from torch.testing._internal.common_cuda import _get_torch_cuda_version, CUDA11OrLater
|
|
from torch.testing._internal.common_dtype import (
|
|
floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and,
|
|
all_types_and_complex, floating_and_complex_types_and
|
|
)
|
|
from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED
|
|
|
|
if TEST_SCIPY:
|
|
import scipy.sparse as sp
|
|
|
|
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
no_mkl_sparse = IS_WINDOWS or not TEST_MKL
|
|
|
|
def _check_cusparse_triangular_solve_available():
|
|
version = _get_torch_cuda_version()
|
|
# cusparseSpSM was added in 11.3.1 but we don't have access to patch version
|
|
min_supported_version = (11, 4)
|
|
return version >= min_supported_version
|
|
|
|
def _check_cusparse_spgemm_available():
|
|
# cusparseSpGEMM was added in 11.0
|
|
version = _get_torch_cuda_version()
|
|
min_supported_version = (11, 0)
|
|
return version >= min_supported_version
|
|
|
|
def _check_cusparse_sddmm_available():
|
|
version = _get_torch_cuda_version()
|
|
# cusparseSDDMM was added in 11.2.1 but we don't have access to patch version
|
|
min_supported_version = (11, 3)
|
|
return version >= min_supported_version
|
|
|
|
_sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db))
|
|
_sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc
|
|
or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db))
|
|
binary_functions_with_dense_output = ['mm', 'mv', ]
|
|
binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db))
|
|
|
|
UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [
|
|
'abs',
|
|
'conj_physical',
|
|
'neg',
|
|
]
|
|
|
|
# This should be just an import from test_linalg instead of code duplication
|
|
# but https://github.com/pytorch/pytorch/pull/63511#discussion_r733989701
|
|
def _test_addmm_addmv(
|
|
test_case,
|
|
f,
|
|
t,
|
|
m,
|
|
v,
|
|
*,
|
|
alpha=None,
|
|
beta=None,
|
|
transpose_out=False,
|
|
layout=torch.strided,
|
|
mode=None
|
|
):
|
|
"""
|
|
Unified test for checking `f(t, m, v, alpha=alpha, beta=beta)` computation,
|
|
where f is `torch.addmv` or `torch.addmm`.
|
|
`transpose_out` controls whether the out argument is in column-major order.
|
|
`layout` controls whether `m` is converted to specified layout or not.
|
|
Custom behaviour is implemented only for torch.sparse_csr layout.
|
|
"""
|
|
dtype = t.dtype
|
|
numpy_dtype = dtype
|
|
if dtype in {torch.bfloat16}:
|
|
numpy_dtype = torch.float
|
|
if dtype.is_complex:
|
|
alpha = 0.9 + 0.3j if alpha is None else alpha
|
|
beta = 0.5 + 0.6j if beta is None else beta
|
|
else:
|
|
alpha = 1.2 if alpha is None else alpha
|
|
beta = 0.8 if beta is None else beta
|
|
|
|
def convert_layout(mat):
|
|
if layout == torch.sparse_csr:
|
|
return mat.to_sparse_csr()
|
|
else:
|
|
assert mat.layout == layout
|
|
return mat
|
|
|
|
if mode == "all_sparse":
|
|
res1 = f(*map(convert_layout, (t, m, v)), alpha=alpha, beta=beta)
|
|
res1 = res1.to_dense()
|
|
elif mode == "dense_result":
|
|
res1 = f(t, convert_layout(m), convert_layout(v), alpha=alpha, beta=beta)
|
|
else:
|
|
res1 = f(t, convert_layout(m), v, alpha=alpha, beta=beta)
|
|
res2 = torch.full_like(res1, float('nan'))
|
|
if transpose_out:
|
|
res2 = res2.t().clone(memory_format=torch.contiguous_format).t()
|
|
f(t, convert_layout(m), v, alpha=alpha, beta=beta, out=res2)
|
|
res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy())
|
|
if beta != 0:
|
|
res3 += (beta * t).to(numpy_dtype).cpu().numpy()
|
|
res3 = torch.from_numpy(res3).to(dtype)
|
|
test_case.assertEqual(res1, res2)
|
|
test_case.assertEqual(res1, res3)
|
|
|
|
|
|
class TestSparseCSRSampler(TestCase):
|
|
|
|
def test_make_crow_indices(self):
|
|
# Here we test the correctness of the crow_indices algorithm
|
|
# and testing it on CPU and with int32 dtype will be
|
|
# sufficient.
|
|
device = torch.device('cpu')
|
|
index_dtype = torch.int32
|
|
for n_rows in range(1, 10):
|
|
for n_cols in range(1, 10):
|
|
for nnz in range(0, n_rows * n_cols + 1):
|
|
crow_indices = self._make_crow_indices(
|
|
n_rows, n_cols, nnz,
|
|
device=device, dtype=index_dtype)
|
|
self.assertEqual(len(crow_indices), n_rows + 1)
|
|
counts = crow_indices[1:] - crow_indices[:-1]
|
|
self.assertEqual(counts.sum(), nnz)
|
|
self.assertGreaterEqual(counts.min(), 0)
|
|
self.assertLessEqual(counts.max(), n_cols)
|
|
|
|
|
|
def all_sparse_compressed_layouts(test_name='layout'):
|
|
return parametrize(test_name, [
|
|
subtest(torch.sparse_csr, name='SparseCSR'),
|
|
subtest(torch.sparse_csc, name='SparseCSC'),
|
|
subtest(torch.sparse_bsr, name='SparseBSR'),
|
|
subtest(torch.sparse_bsc, name='SparseBSC')])
|
|
|
|
|
|
def sparse_compressed_nonblock_layouts(test_name='layout'):
|
|
return parametrize(test_name, [
|
|
subtest(torch.sparse_csr, name='SparseCSR'),
|
|
subtest(torch.sparse_csc, name='SparseCSC')])
|
|
|
|
|
|
sparse_compressed_indices_methods = {
|
|
torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
|
|
torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
|
|
torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
|
|
torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
|
|
}
|
|
|
|
|
|
class TestSparseCompressed(TestCase):
|
|
"""Testing sparse compressed (CSR, CSC, BSR, BSC) tensor generic features.
|
|
"""
|
|
|
|
def genTensor(self, size, nnz, *, layout, device=None, dtype=torch.float, index_dtype=torch.int64):
|
|
if device is None:
|
|
device = self.device_type
|
|
return self.genSparseCompressedTensor(size, nnz, device=device, dtype=dtype, index_dtype=index_dtype, layout=layout)
|
|
|
|
def _generate_small_inputs(self, layout, device, dtype, index_dtype):
|
|
"""Generator of inputs to sparse compressed tensor factory functions.
|
|
|
|
The input is defined as a 4-tuple:
|
|
compressed_indices, plain_indices, values, expected_size_from_shape_inference
|
|
"""
|
|
from operator import mul
|
|
from functools import reduce
|
|
if layout in {torch.sparse_csr, torch.sparse_csc}:
|
|
yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype),
|
|
torch.tensor([0, 1, 0, 1], device=device, dtype=index_dtype),
|
|
torch.tensor([1, 2, 3, 4], device=device, dtype=dtype),
|
|
(2, 2))
|
|
yield (torch.tensor([0, ], device=device, dtype=index_dtype),
|
|
torch.tensor([], device=device, dtype=index_dtype),
|
|
torch.tensor([], device=device, dtype=dtype),
|
|
(0, 0))
|
|
for batch_shape in [(2,), (2, 3)]:
|
|
prod = reduce(mul, batch_shape, 1)
|
|
yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype).repeat(prod, 1).reshape(*batch_shape, -1),
|
|
torch.tensor([0, 1, 0, 1], device=device, dtype=index_dtype).repeat(prod, 1).reshape(*batch_shape, -1),
|
|
torch.tensor([1, 2, 3, 4], device=device, dtype=dtype).repeat(prod, 1).reshape(*batch_shape, -1),
|
|
(*batch_shape, 2, 2))
|
|
else:
|
|
assert layout in {torch.sparse_bsr, torch.sparse_bsc}
|
|
yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype),
|
|
torch.tensor([0, 1, 0, 1], device=device, dtype=index_dtype),
|
|
torch.tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 44]]], device=device, dtype=dtype),
|
|
(2, 4))
|
|
yield (torch.tensor([0, ], device=device, dtype=index_dtype),
|
|
torch.tensor([], device=device, dtype=index_dtype),
|
|
torch.tensor([], device=device, dtype=dtype).reshape(1, 0, 0),
|
|
(0, 0))
|
|
for batch_shape in [(2,), (2, 3)]:
|
|
prod = reduce(mul, batch_shape, 1)
|
|
yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype).repeat(prod, 1).reshape(*batch_shape, -1),
|
|
torch.tensor([0, 1, 0, 1], device=device, dtype=index_dtype).repeat(prod, 1).reshape(*batch_shape, -1),
|
|
torch.tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 44]]],
|
|
device=device, dtype=dtype).repeat(prod, 1, 1).reshape(*batch_shape, 4, 1, 2),
|
|
(*batch_shape, 2, 4))
|
|
|
|
@all_sparse_compressed_layouts()
|
|
@onlyCPU
|
|
def test_layout(self, layout):
|
|
self.assertIn(str(layout), {'torch.sparse_csr', 'torch.sparse_csc', 'torch.sparse_bsr', 'torch.sparse_bsc'})
|
|
self.assertEqual(type(layout), torch.layout)
|
|
|
|
@parametrize('shape_and_device_inference', [subtest(False, name='_'), subtest(False, name='shape_and_device_inference')])
|
|
@parametrize('use_factory_function', [subtest(False, name='_'), subtest(True, name='factory')])
|
|
@parametrize('input_kind', [subtest('tensor', name='from_tensor'), subtest('list', name='from_list')])
|
|
@all_sparse_compressed_layouts()
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_sparse_compressed_constructor(self, layout, device, dtype,
|
|
use_factory_function, shape_and_device_inference, input_kind):
|
|
factory_function = {
|
|
torch.sparse_csr: torch.sparse_csr_tensor,
|
|
torch.sparse_csc: torch.sparse_csc_tensor,
|
|
torch.sparse_bsr: torch.sparse_bsr_tensor,
|
|
torch.sparse_bsc: torch.sparse_bsc_tensor,
|
|
}[layout]
|
|
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for compressed_indices, plain_indices, values, size in self._generate_small_inputs(layout, device, dtype, index_dtype):
|
|
if input_kind == 'list':
|
|
if size == (0, 0):
|
|
# for this degenerate case, plain_indices must
|
|
# remain a tensor because
|
|
# tensor(plain_indices) results a float dtype
|
|
# when plain_indices is an empty list
|
|
if index_dtype == torch.int32:
|
|
# skip testing int32 case because
|
|
# tensor(compressed_indices) results a
|
|
# int64 dtype when compressed_indices is
|
|
# [0] (a list of single int zero).
|
|
continue
|
|
else:
|
|
plain_indices = plain_indices.tolist()
|
|
compressed_indices = compressed_indices.tolist()
|
|
values = values.tolist()
|
|
if size == (0, 0) and layout in {torch.sparse_bsr, torch.sparse_bsc}:
|
|
# in the block sparse case, values of type list needs to represent a 3-D tensor
|
|
values = [[[]]]
|
|
if use_factory_function:
|
|
if shape_and_device_inference:
|
|
sparse = factory_function(compressed_indices, plain_indices, values)
|
|
else:
|
|
sparse = factory_function(compressed_indices, plain_indices, values, size,
|
|
dtype=dtype, device=device)
|
|
else:
|
|
if shape_and_device_inference:
|
|
sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, layout=layout)
|
|
else:
|
|
sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size,
|
|
dtype=dtype, layout=layout, device=device)
|
|
self.assertEqual(layout, sparse.layout)
|
|
self.assertEqual(size, sparse.shape)
|
|
self.assertEqual(compressed_indices, compressed_indices_mth(sparse))
|
|
self.assertEqual(plain_indices, plain_indices_mth(sparse))
|
|
self.assertEqual(values, sparse.values())
|
|
|
|
@skipMeta
|
|
@sparse_compressed_nonblock_layouts()
|
|
@dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half))
|
|
def test_empty(self, layout, device, dtype):
|
|
ns = [5, 2, 0]
|
|
batch_shapes = [(), (2,), (2, 3)]
|
|
compressed_dim = {
|
|
torch.sparse_csr: -2,
|
|
torch.sparse_csc: -1,
|
|
}[layout]
|
|
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
|
|
for m, n, b in itertools.product(ns, ns, batch_shapes):
|
|
shape = (*b, m, n)
|
|
result = torch.empty(shape, dtype=dtype, device=device, layout=layout)
|
|
self.assertEqual(result.shape, shape)
|
|
self.assertEqual(result.dtype, dtype)
|
|
self.assertEqual(result.device, torch.device(device))
|
|
self.assertEqual(result.layout, layout)
|
|
self.assertEqual(compressed_indices_mth(result).shape, (*b, shape[compressed_dim] + 1,))
|
|
self.assertEqual(plain_indices_mth(result).shape, (*b, 0,))
|
|
self.assertEqual(result.values().shape, (*b, 0,))
|
|
self.assertEqual(result._nnz(), 0)
|
|
self.assertEqual(compressed_indices_mth(result).device, torch.device(device))
|
|
self.assertEqual(plain_indices_mth(result).device, torch.device(device))
|
|
self.assertEqual(result.values().device, torch.device(device))
|
|
self.assertEqual(compressed_indices_mth(result).dtype, torch.int64)
|
|
self.assertEqual(plain_indices_mth(result).dtype, torch.int64)
|
|
self.assertEqual(result.values().dtype, dtype)
|
|
|
|
@skipMeta
|
|
@sparse_compressed_nonblock_layouts()
|
|
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
|
|
def test_empty_errors(self, layout, device, dtype):
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"torch.empty: Only batched sparse compressed \\(non-block\\) tensors are supported"
|
|
", but got size"):
|
|
torch.empty((5,), dtype=dtype, device=device, layout=layout)
|
|
|
|
@skipMeta
|
|
@all_sparse_compressed_layouts()
|
|
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
|
|
def test_clone(self, layout, device, dtype):
|
|
for compressed_indices, plain_indices, values, size in self._generate_small_inputs(
|
|
layout, device, dtype, index_dtype=torch.int32):
|
|
sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size,
|
|
dtype=dtype, layout=layout, device=device)
|
|
cloned_sparse = sparse.clone()
|
|
self.assertEqual(sparse, cloned_sparse)
|
|
|
|
@all_sparse_compressed_layouts()
|
|
def test_print(self, layout, device):
|
|
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
|
|
printed = []
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for dtype in [torch.float32, torch.float64]:
|
|
for compressed_indices, plain_indices, values, size in self._generate_small_inputs(
|
|
layout, device, dtype, index_dtype):
|
|
batch_shape = tuple(size[:-2])
|
|
block_shape = tuple(values.shape[-2:]) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
|
|
blocksize0, blocksize1 = block_shape if layout in {torch.sparse_bsr, torch.sparse_bsc} else (1, 1)
|
|
if size not in [(2 * blocksize0, 2 * blocksize1), (0, 0),
|
|
(2, 3, 2 * blocksize0, 2 * blocksize1), (2, 2 * blocksize0, 2 * blocksize1)]:
|
|
# Skip inputs that are not in the list of
|
|
# expected sizes to ensure the stability of
|
|
# test_print in the case
|
|
# _generate_small_inputs is extended with new
|
|
# inputs
|
|
continue
|
|
if block_shape not in [(), (0, 0), (1, 2)]:
|
|
# Skip inputs that are not in the list of
|
|
# expected block sizes to ensure test_print
|
|
# stability.
|
|
continue
|
|
printed.append("########## {}/{}/batch_shape={}/block_shape={} ##########".format(
|
|
dtype, index_dtype, batch_shape, block_shape))
|
|
x = torch.sparse_compressed_tensor(compressed_indices,
|
|
plain_indices,
|
|
values, dtype=dtype, layout=layout, device=device)
|
|
printed.append("# sparse tensor")
|
|
printed.append(str(x))
|
|
printed.append(f"# _{compressed_indices_mth.__name__}")
|
|
printed.append(str(compressed_indices_mth(x)))
|
|
printed.append(f"# _{plain_indices_mth.__name__}")
|
|
printed.append(str(plain_indices_mth(x)))
|
|
printed.append("# _values")
|
|
printed.append(str(x.values()))
|
|
printed.append('')
|
|
printed.append('')
|
|
orig_maxDiff = self.maxDiff
|
|
self.maxDiff = None
|
|
try:
|
|
self.assertExpected('\n'.join(printed))
|
|
self.maxDiff = orig_maxDiff
|
|
except Exception:
|
|
self.maxDiff = orig_maxDiff
|
|
raise
|
|
|
|
@skipMeta
|
|
@all_sparse_compressed_layouts()
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_copy(self, layout, device, dtype):
|
|
|
|
def run_test(shape, blocksize, nnz, index_type):
|
|
a = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device,
|
|
index_dtype=index_dtype, blocksize=blocksize)
|
|
b = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device,
|
|
index_dtype=index_dtype, blocksize=blocksize)
|
|
|
|
a.copy_(b)
|
|
|
|
self.assertEqual(a, b)
|
|
|
|
ns = [(9, 3), (2, 1), (0, 0)] # (number of dimensions, the corresponding block size)
|
|
batch_shapes = [(), (2,), (2, 3)]
|
|
for ((m, bm), (n, bn), b), index_dtype in zip(itertools.product(ns, ns, batch_shapes), [torch.int32, torch.int64]):
|
|
blocksize = (bm, bn) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
|
|
run_test((*b, m, n), blocksize, 0, index_dtype)
|
|
run_test((*b, m, n), blocksize, m * n, index_dtype)
|
|
|
|
@skipMeta
|
|
@all_sparse_compressed_layouts()
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_copy_errors(self, layout, device, dtype):
|
|
blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
|
|
nnz = 6 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 1
|
|
shape1 = (2 * 6, 3 * 6) if layout in {torch.sparse_bsr, torch.sparse_bsc} else (2, 3)
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
a = self.genSparseCompressedTensor(shape1, 0, dtype=dtype, layout=layout, device=device,
|
|
index_dtype=index_dtype, blocksize=blocksize)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"copy of sparse compressed tensors having different layouts is not supported."):
|
|
a.copy_(torch.empty(a.shape, dtype=dtype, device=device))
|
|
|
|
b = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device,
|
|
index_dtype=index_dtype, blocksize=blocksize)
|
|
assert a._nnz() != b._nnz(), (a._nnz(), b._nnz())
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"only sparse compressed tensors with the same number of specified elements are supported."):
|
|
a.copy_(b)
|
|
|
|
shape2 = tuple(reversed(shape1))
|
|
c = self.genSparseCompressedTensor(shape2, nnz, dtype=dtype, layout=layout, device=device,
|
|
index_dtype=index_dtype, blocksize=blocksize)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"expected shapes of self and src to match along dimension"):
|
|
b.copy_(c)
|
|
|
|
if blocksize:
|
|
blocksize1 = tuple(reversed(blocksize))
|
|
d = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device,
|
|
index_dtype=index_dtype, blocksize=blocksize1)
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"copy of sparse compressed tensors having different block sizes is not supported"):
|
|
b.copy_(d)
|
|
|
|
def _smallest_divisor(self, n):
|
|
for i in range(2, int(n ** 0.5) + 1):
|
|
if n % i == 0:
|
|
return i
|
|
return n
|
|
|
|
@all_sparse_compressed_layouts()
|
|
@ops(_sparse_compressed_ops)
|
|
def test_consistency(self, layout, device, dtype, op):
|
|
# TODO: Normaly, we should use DecorateInfo instead of
|
|
# skipTest but this requires implemening OpInfo support for
|
|
# layout as a test parameter (similar to device and dtype).
|
|
if not (layout == torch.sparse_csr and op.supports_sparse_csr
|
|
or layout == torch.sparse_csc and op.supports_sparse_csc
|
|
or layout == torch.sparse_bsr and op.supports_sparse_bsr
|
|
or layout == torch.sparse_bsc and op.supports_sparse_bsc):
|
|
self.skipTest(f"{op.name} does not support input with {layout} layout")
|
|
|
|
require_mask = isinstance(op, ReductionOpInfo) and '_masked.' in op.name
|
|
if require_mask and layout in {torch.sparse_bsr, torch.sparse_bsc}:
|
|
self.skipTest(f"{op.name} does not support input with {layout} layout")
|
|
|
|
if layout is torch.sparse_bsc:
|
|
self.skipTest(f"test requires conversion from Strided layout to {layout} layout")
|
|
|
|
samples = list(op.sample_inputs(device, dtype))
|
|
|
|
# Fail early to prevent silent success with this test
|
|
ndims_equals_2d = (s.input.ndim == 2 for s in samples)
|
|
if not any(ndims_equals_2d):
|
|
raise ValueError("Expected at least one 2D tensor in samples.")
|
|
|
|
count = 0
|
|
for sample in samples:
|
|
assert torch.is_tensor(sample.input)
|
|
# Sparse CSR/CSC only supports 2D tensors as inputs
|
|
if sample.input.ndim != 2:
|
|
continue
|
|
if isinstance(op, ReductionOpInfo):
|
|
# Reductions on sparse compressed require keepdim=True
|
|
if not sample.kwargs.get('keepdim'):
|
|
continue
|
|
# Reductions on sparse compressed tensors require explicit mask
|
|
if require_mask and sample.kwargs.get('mask') is None:
|
|
continue
|
|
expected = op(sample.input, **sample.kwargs)
|
|
assert torch.is_tensor(expected)
|
|
# Use smallest non-trivial blocksize for the given input shape:
|
|
blocksize = tuple(map(self._smallest_divisor, sample.input.shape[-2:]))
|
|
if layout is torch.sparse_bsr:
|
|
sparse = sample.input.to_sparse_bsr(blocksize)
|
|
elif layout is torch.sparse_bsc:
|
|
sparse = sample.input.to_sparse_bsc(blocksize)
|
|
elif layout is torch.sparse_csr:
|
|
sparse = sample.input.to_sparse_csr()
|
|
elif layout is torch.sparse_csc:
|
|
sparse = sample.input.to_sparse_csc()
|
|
else:
|
|
assert 0, layout
|
|
|
|
assert torch.is_tensor(sparse)
|
|
output = op(sparse, **sample.kwargs)
|
|
assert torch.is_tensor(output)
|
|
strided_output = output.to_dense()
|
|
if require_mask:
|
|
expected *= torch._masked._output_mask(op.op, sample.input, **sample.kwargs)
|
|
self.assertEqual(strided_output, expected)
|
|
count += 1
|
|
|
|
# Better fail late to prevent silent success with this test
|
|
if not count:
|
|
raise ValueError("Expected at least one sample with keepdim and/or explicit mask for reductions.")
|
|
|
|
|
|
class TestSparseCSR(TestCase):
|
|
|
|
def test_csr_stride(self):
|
|
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"):
|
|
a.stride()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"):
|
|
a.stride(-1)
|
|
|
|
def test_csr_storage(self):
|
|
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Cannot access storage of SparseCsrTensorImpl"):
|
|
a.storage()
|
|
|
|
def test_csr_is_contiguous(self):
|
|
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Tensors of type SparseCsrTensorImpl do not have is_contiguous"):
|
|
a.is_contiguous()
|
|
|
|
def test_csr_double_to_sparse_csr(self):
|
|
a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
|
|
a.to_sparse_csr().to_sparse_csr()
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
|
|
def test_sparse_csr_select(self, device, dtype):
|
|
batch_shape = (2, 3)
|
|
crow_indices = torch.tensor([0, 2, 4], device=device).repeat(6, 1).reshape(*batch_shape, -1)
|
|
col_indices = torch.tensor([0, 1, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1)
|
|
values = torch.tensor([1, 2, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1)
|
|
sparse = torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
values,
|
|
size=(*batch_shape, 2, 10),
|
|
dtype=dtype,
|
|
device=device)
|
|
|
|
# select from batch dimensions
|
|
sparse_selected12 = sparse.select(1, 2)
|
|
expected_sparse_selected12 = torch.sparse_csr_tensor(crow_indices.select(1, 2).contiguous(),
|
|
col_indices.select(1, 2).contiguous(),
|
|
values.select(1, 2).contiguous(),
|
|
size=(2, 2, 10),
|
|
dtype=dtype,
|
|
device=device)
|
|
self.assertEqual(expected_sparse_selected12, sparse_selected12)
|
|
|
|
# select from rows or columns
|
|
sparse_non_batched = sparse[0, 0]
|
|
for selects_args in [(0, 0), (1, 1)]:
|
|
sparse_selected = sparse_non_batched.select(*selects_args)
|
|
dense_selected = sparse_non_batched.to_dense().select(*selects_args)
|
|
self.assertEqual(dense_selected, sparse_selected)
|
|
|
|
# index a single element
|
|
self.assertEqual(sparse[0, 0, 0, 0], sparse.to_dense()[0, 0, 0, 0])
|
|
|
|
# selecting from rows or columns for batched CSR is not yet implemented
|
|
with self.assertRaisesRegex(RuntimeError, "selecting rows or columns is not implemented for batched"):
|
|
sparse.select(-2, 0)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "selecting rows or columns is not implemented for batched"):
|
|
sparse.select(-1, 0)
|
|
|
|
# assigning to sparse trhough indexing is disabled
|
|
with self.assertRaisesRegex(TypeError, "Cannot assign to a sparse tensor"):
|
|
sparse[0, 0, 0, 0] = 99.0
|
|
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_resize(self, device, dtype):
|
|
batch_shapes = [(), (2,), (2, 3)]
|
|
for index_dtype, b in zip([torch.int32, torch.int64], batch_shapes):
|
|
shape = (*b, 2, 3)
|
|
nnz = 6
|
|
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
|
|
new_shape = (*b, 4, 5)
|
|
a.resize_(new_shape)
|
|
|
|
self.assertEqual(a.shape, new_shape)
|
|
# resize to larger shape doesn't add specified elements
|
|
self.assertEqual(a._nnz(), nnz)
|
|
|
|
new_shape = (*b, 1, 5)
|
|
a.resize_(new_shape)
|
|
|
|
self.assertEqual(a.shape, new_shape)
|
|
# resize to smaller shape trims specified elements
|
|
self.assertEqual(a._nnz(), 5)
|
|
|
|
# trim batched dimensions
|
|
a.resize_(new_shape[-2], new_shape[-1])
|
|
self.assertEqual(a.shape, (new_shape[-2], new_shape[-1]))
|
|
self.assertEqual(a._nnz(), 5)
|
|
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_resize_errors(self, device, dtype):
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
shape = (2, 3)
|
|
nnz = 6
|
|
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only batched sparse CSR matrices are supported"):
|
|
new_shape = (4,)
|
|
a.resize_(new_shape)
|
|
|
|
# resizing of columns to smaller size is not implemented
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.",
|
|
):
|
|
new_shape = (2, 2)
|
|
a.resize_(new_shape)
|
|
|
|
def test_factory_type_invariants_check(self, device):
|
|
with self.assertRaisesRegex(RuntimeError, "both crow_indices and col_indices should have the same type."):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=torch.int64),
|
|
torch.tensor([0, 1, 0, 1], dtype=torch.int32),
|
|
torch.tensor([1, 2, 3, 4]),
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "crow_indices and col_indices must be an int32 or int64 type"):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=torch.int16),
|
|
torch.tensor([0, 1, 0, 1], dtype=torch.int16),
|
|
torch.tensor([1, 2, 3, 4]),
|
|
device=device)
|
|
|
|
def test_factory_layout_invariants_check(self, device):
|
|
with self.assertRaisesRegex(RuntimeError, "expected values to be a strided and contiguous tensor"):
|
|
values = torch.tensor([1.], device=device).expand(4,)
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], device=device),
|
|
torch.tensor([0, 1, 0, 1], device=device),
|
|
values)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected col_indices to be a strided and contiguous tensor"):
|
|
col_indices = torch.tensor([0], device=device).expand(4,)
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 4]),
|
|
col_indices,
|
|
torch.tensor([1, 2, 3, 4]))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "expected crow_indices to be a strided and contiguous tensor"):
|
|
crow_indices = torch.arange(6, device=device)
|
|
torch.sparse_csr_tensor(crow_indices[::2],
|
|
torch.tensor([0, 1, 0, 1], device=device),
|
|
torch.tensor([1, 2, 3, 4]))
|
|
|
|
def test_factory_shape_invariants_check(self, device):
|
|
crow_indices = torch.tensor([0, 2, 4], device=device)
|
|
col_indices = torch.tensor([0, 1, 0, 1], device=device)
|
|
values = torch.tensor([1, 2, 3, 4], device=device)
|
|
size = (2, 10)
|
|
torch.sparse_csr_tensor(crow_indices, col_indices, values, size, device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"size of a batched CSR tensor must have length >= 2, but got: 1"):
|
|
torch.sparse_csr_tensor(crow_indices, col_indices, values,
|
|
size=(2,),
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"crow_indices must have dim >= 1 but got crow_indices\.dim\(\)\ = 0"):
|
|
torch.sparse_csr_tensor(torch.zeros((), device=device, dtype=torch.int64),
|
|
col_indices,
|
|
values,
|
|
size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"col_indices must have dim >= 1 but got col_indices\.dim\(\)\ = 0"):
|
|
torch.sparse_csr_tensor(crow_indices,
|
|
torch.zeros((), device=device, dtype=torch.int64),
|
|
values,
|
|
size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"values must have dim >= 1 but got values\.dim\(\)\ = 0"):
|
|
torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
torch.zeros((), device=device, dtype=torch.int64),
|
|
size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"crow_indices\.size\(-1\) must be equal to size\[-2\] \+ 1 \(that is 2\), but got: 3"):
|
|
torch.sparse_csr_tensor(crow_indices, col_indices, values, (1, 1),
|
|
device=device)
|
|
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"number of dimensions of crow_indices and col_indices must be the same"):
|
|
torch.sparse_csr_tensor(crow_indices, col_indices.repeat(2, 1), values, size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"non-zero dense dimensions \(=1\) is not supported"):
|
|
torch.sparse_csr_tensor(crow_indices, col_indices, values.repeat(2, 1), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"number of dimensions of indices must be one less"):
|
|
torch.sparse_csr_tensor(crow_indices.repeat(2, 1), col_indices.repeat(2, 1), values.repeat(2, 1), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"all batch dimensions of the provided size \(\[2\]\), indices \(\[2\], \[3\]\),"
|
|
r" and values \(\[4\]\) must be the same"):
|
|
torch.sparse_csr_tensor(crow_indices.repeat(2, 1), col_indices.repeat(3, 1), values.repeat(4, 1), (2, 2, 10),
|
|
device=device)
|
|
|
|
def test_factory_indices_invariants_check(self, device):
|
|
crow_indices = [0, 2, 4]
|
|
col_indices = [0, 1, 0, 1]
|
|
values = [1, 2, 3, 4]
|
|
size = (2, 10)
|
|
with self.assertRaisesRegex(RuntimeError, "0th value of crow_indices must be 0."):
|
|
torch.sparse_csr_tensor(torch.tensor([-1, 0, 4]), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"last value of crow_indices should be equal to the length of col_indices."):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 2, 5]), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"at position i \= 2," +
|
|
r" the condition crow_indices\[i - 1\] <\= crow_indices\[i\] fails"):
|
|
torch.sparse_csr_tensor(torch.tensor([0, 5, 4]), torch.tensor(col_indices), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"col_indices\.min\(\) should be greater or equal to zero"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, -1, 0, 1]), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"size\[-1\] should be greater than col_indices\.max\(\)"):
|
|
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, 11, 0, 1]), torch.tensor(values), size,
|
|
device=device)
|
|
|
|
@onlyCUDA
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_factory_device_type_inference(self, device, dtype):
|
|
cpu_cuda = ('cpu', 'cuda')
|
|
cpu_cuda_none = cpu_cuda + (None,)
|
|
for crow_indices_device, col_indices_device, values_device, device in itertools.product(cpu_cuda,
|
|
cpu_cuda,
|
|
cpu_cuda,
|
|
cpu_cuda_none):
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
crow_indices = torch.tensor([0, 2, 4], dtype=index_dtype, device=crow_indices_device)
|
|
col_indices = torch.tensor([0, 1, 0, 1], dtype=index_dtype, device=col_indices_device)
|
|
values = torch.tensor([1, 2, 3, 4], dtype=dtype, device=values_device)
|
|
if device is None and (crow_indices_device != col_indices_device or
|
|
crow_indices_device != values_device):
|
|
with self.assertRaises(RuntimeError):
|
|
torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
values,
|
|
size=(2, 10),
|
|
device=device)
|
|
else:
|
|
t = torch.sparse_csr_tensor(crow_indices,
|
|
col_indices,
|
|
values,
|
|
size=(2, 10),
|
|
device=device)
|
|
should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda'))
|
|
self.assertEqual(should_be_cuda, t.is_cuda)
|
|
t.crow_indices().dtype == index_dtype
|
|
t.col_indices().dtype == index_dtype
|
|
t.values().dtype == dtype
|
|
t.crow_indices().device == t.values().device
|
|
t.col_indices().device == t.values().device
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_sparse_csr_from_dense(self, device, dtype):
|
|
dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values())
|
|
|
|
dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values())
|
|
|
|
dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices())
|
|
self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices())
|
|
self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values())
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_sparse_csr_to_dense(self, device, dtype):
|
|
mn = [5, 2, 0]
|
|
for (m, n) in itertools.product(mn, mn):
|
|
size = (m, n)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
sparse = dense.to_sparse_csr()
|
|
self.assertEqual(sparse.to_dense(), dense)
|
|
|
|
batch_shape = (2, 3)
|
|
crow_indices = torch.tensor([0, 3, 5], device=device).repeat(6, 1).reshape(*batch_shape, -1)
|
|
col_indices = torch.tensor([0, 1, 2, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1)
|
|
values = torch.tensor([1, 2, 1, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1)
|
|
csr = torch.sparse_csr_tensor(crow_indices, col_indices, values, dtype=dtype, device=device)
|
|
dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device).repeat(6, 1).reshape(csr.shape)
|
|
self.assertEqual(csr.to_dense(), dense)
|
|
|
|
@skipMeta
|
|
@skipCPUIfNoMklSparse
|
|
@coalescedonoff
|
|
@dtypes(torch.double)
|
|
def test_coo_to_csr_convert(self, device, dtype, coalesced):
|
|
with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"):
|
|
torch._convert_indices_from_coo_to_csr(
|
|
torch.randint(100, (5, 5), device=device),
|
|
size=100)
|
|
|
|
size = (5, 5)
|
|
sparse_dim = 2
|
|
nnz = 10
|
|
sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype)
|
|
sparse_csr = sparse_coo.to_sparse_csr()
|
|
|
|
self.assertTrue(sparse_csr.is_sparse_csr)
|
|
self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense())
|
|
|
|
vec = torch.randn((5, 1), dtype=dtype, device=device)
|
|
coo_product = sparse_coo.matmul(vec)
|
|
csr_product = sparse_csr.matmul(vec)
|
|
|
|
self.assertEqual(coo_product, csr_product)
|
|
|
|
vec = torch.randn((100, 1), dtype=dtype, device=device)
|
|
index = torch.tensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
], dtype=torch.int32)
|
|
values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device)
|
|
coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device)
|
|
csr = coo.to_sparse_csr()
|
|
|
|
self.assertEqual(coo.matmul(vec), csr.matmul(vec))
|
|
|
|
col_indices = torch.tensor([
|
|
31, 92, 65, 50, 34, 62, 22, 56, 74, 89
|
|
], dtype=torch.int64, device=device)
|
|
self.assertEqual(csr.col_indices(), col_indices)
|
|
|
|
values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device)
|
|
self.assertEqual(csr.values(), values)
|
|
|
|
@parametrize("blocksize", [2, 4])
|
|
@dtypes((torch.double, torch.int32), (torch.double, torch.int64))
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@skipMeta
|
|
def test_csr_to_block_csr(self, device, dtypes, blocksize):
|
|
for shape in [(24, 24), (12, 24)]:
|
|
dtype, index_dtype = dtypes
|
|
m, k = shape
|
|
nnz = random.randint(0, m * k)
|
|
t = self.genSparseCSRTensor((m * blocksize, k * blocksize), nnz, dtype=dtype,
|
|
device=device, index_dtype=index_dtype)
|
|
st = sp.csr_matrix((t.values().cpu(), t.col_indices().cpu(), t.crow_indices().cpu()), shape=tuple(t.size()))
|
|
block_t = t.to_sparse_bsr((blocksize, blocksize))
|
|
self.assertEqual(block_t.values().dim(), 3)
|
|
self.assertTrue(block_t.layout == torch.sparse_bsr)
|
|
block_st = st.tobsr(blocksize=(blocksize, blocksize))
|
|
self.assertEqual(block_t.values().cpu(), block_st.data)
|
|
self.assertEqual(block_t.col_indices().cpu(), torch.tensor(block_st.indices).to(index_dtype))
|
|
self.assertEqual(block_t.crow_indices().cpu(), torch.tensor(block_st.indptr).to(index_dtype))
|
|
|
|
@dtypes(torch.double)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_csr_to_block_csr_errors(self, device, dtype):
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
nnz = 15
|
|
t = self.genSparseCSRTensor((16, 16), nnz, dtype=dtype,
|
|
device=device, index_dtype=index_dtype)
|
|
with self.assertRaisesRegex(RuntimeError, "must be square."):
|
|
block_t = t.to_sparse_bsr((2, 3))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"size \(16, 16\) with block size \(5, 5\)"):
|
|
block_t = t.to_sparse_bsr((5, 5))
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_sparse_csr_from_dense_convert_error(self, device, dtype):
|
|
size = (4, 2, 4)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Only 2D"):
|
|
sparse = dense.to_sparse_csr()
|
|
|
|
# TODO: Support auto generation of device check for sparse tensors
|
|
# See: https://github.com/pytorch/pytorch/issues/59058
|
|
@onlyCUDA
|
|
@dtypes(torch.double)
|
|
def test_matmul_device_mismatch(self, device, dtype):
|
|
cpu = torch.rand((10, 10))
|
|
cuda = cpu.cuda()
|
|
for s, m1, m2 in itertools.product((cpu, cuda), repeat=3):
|
|
csr = m1.to_sparse()
|
|
if s.device == csr.device == m2.device:
|
|
torch.addmm(s, csr, m2)
|
|
else:
|
|
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
|
|
torch.addmm(s, csr, m2)
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@skipCUDAIfNoCusparseGeneric
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCUDA(*floating_and_complex_types_and(
|
|
*[torch.half] if SM53OrLater else [],
|
|
*[torch.bfloat16] if SM80OrLater else []))
|
|
def test_csr_matvec(self, device, dtype):
|
|
side = 100
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
vec = torch.randn(side, dtype=dtype, device=device)
|
|
|
|
res = csr.matmul(vec)
|
|
expected = csr.to_dense().matmul(vec)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
bad_vec = torch.randn(side + 10, dtype=dtype, device=device)
|
|
err_msg = "size mismatch, got"
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
csr.matmul(bad_vec)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported")
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_baddbmm(self, device, dtype):
|
|
def run_test(c, a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None):
|
|
alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random()
|
|
beta = complex(random.random(), random.random()) if dtype.is_complex else random.random()
|
|
b = b.mH if (op_b and a.shape == b.shape) else b
|
|
|
|
actual = torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta)
|
|
|
|
out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c)
|
|
torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta, out=out)
|
|
|
|
expected = [torch.addmm(c[i], a, b[i], alpha=alpha, beta=beta) for i in range(c.shape[0])]
|
|
expected = torch.stack(expected, 0)
|
|
|
|
self.assertEqual(actual, out)
|
|
self.assertEqual(actual, expected)
|
|
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]):
|
|
nnz = random.randint(0, m * k)
|
|
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
|
|
# a_batched is a regular CSR tensor but with a batch dimension in the shape
|
|
a_batched = torch._sparse_csr_tensor_unsafe(
|
|
a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k))
|
|
|
|
b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
c = make_tensor((batch_size, m, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
for op_b, op_out in itertools.product([True, False], repeat=2):
|
|
run_test(c, a, a_batched, b, op_b, op_out, dtype=dtype, device=device)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported")
|
|
@skipCUDAIfNoCusparseGeneric
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_bmm(self, device, dtype):
|
|
def run_test(a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None):
|
|
b = b.mH if (op_b and a.shape == b.shape) else b
|
|
|
|
actual = torch.bmm(a_batched, b)
|
|
|
|
out = torch.empty_like(actual.mH if op_out and a.shape == b.shape else actual)
|
|
torch.bmm(a_batched, b, out=out)
|
|
|
|
expected = [torch.mm(a, b[i]) for i in range(b.shape[0])]
|
|
expected = torch.stack(expected, 0)
|
|
|
|
self.assertEqual(actual, out)
|
|
self.assertEqual(actual, expected)
|
|
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]):
|
|
nnz = random.randint(0, m * k)
|
|
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
|
|
# a_batched is a regular CSR tensor but with a batch dimension in the shape
|
|
a_batched = torch._sparse_csr_tensor_unsafe(
|
|
a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k))
|
|
|
|
b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
for op_b, op_out in itertools.product([True, False], repeat=2):
|
|
run_test(a, a_batched, b, op_b, op_out, dtype=dtype, device=device)
|
|
|
|
def run_test_block_addmm_addmv(self, addmv_addmm, c, a, b, op_b=False, op_out=False, *, dtype=None, device=None):
|
|
alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random()
|
|
beta = complex(random.random(), random.random()) if dtype.is_complex else random.random()
|
|
b = b.mH if (op_b and a.shape == b.shape) else b
|
|
|
|
actual = addmv_addmm(c, a, b, alpha=alpha, beta=beta)
|
|
|
|
out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c)
|
|
addmv_addmm(c, a, b, alpha=alpha, beta=beta, out=out)
|
|
|
|
a_bsr = sp.bsr_matrix(
|
|
(
|
|
a.values().cpu().numpy(),
|
|
a.col_indices().cpu().numpy(),
|
|
a.crow_indices().cpu().numpy(),
|
|
),
|
|
shape=a.shape,
|
|
)
|
|
expected = alpha * (a_bsr * b.cpu().resolve_conj().numpy()) + beta * c.cpu().numpy()
|
|
self.assertEqual(actual, out)
|
|
self.assertEqual(actual, expected)
|
|
|
|
# TODO: block_size 1 is broken
|
|
@parametrize("block_size", [2, 3])
|
|
@parametrize("index_dtype", [torch.int32, torch.int64])
|
|
@parametrize("noncontiguous", [True, False])
|
|
@skipCPUIfNoMklSparse
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
|
|
torch.float64: 1e-5, torch.complex128: 1e-5})
|
|
def test_block_addmm(self, device, dtype, index_dtype, block_size, noncontiguous):
|
|
for (m, n, k) in itertools.product([2, 5], repeat=3):
|
|
nnz = random.randint(0, m * k)
|
|
if not noncontiguous:
|
|
a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz,
|
|
dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a = a.to_sparse_bsr((block_size, block_size))
|
|
else:
|
|
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
|
|
a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks
|
|
a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(),
|
|
a_data, (m * block_size, k * block_size))
|
|
b = make_tensor((k * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
c = make_tensor((m * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
for op_b, op_out in itertools.product([True, False], repeat=2):
|
|
self.run_test_block_addmm_addmv(torch.addmm, c, a, b, op_b, op_out, dtype=dtype, device=device)
|
|
|
|
@parametrize("block_size", [2, 3])
|
|
@parametrize("index_dtype", [torch.int32, torch.int64])
|
|
@parametrize("noncontiguous", [True, False])
|
|
@skipCPUIfNoMklSparse
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_block_addmv(self, device, dtype, index_dtype, block_size, noncontiguous):
|
|
# TODO: Explicitly disable block size 1 support
|
|
# if (TEST_WITH_ROCM or not TEST_CUSPARSE_GENERIC) and block_size == 1:
|
|
# return
|
|
for (m, k) in itertools.product([2, 5], repeat=2):
|
|
nnz = random.randint(0, m * k)
|
|
if not noncontiguous:
|
|
a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz,
|
|
dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a = a.to_sparse_bsr((block_size, block_size))
|
|
else:
|
|
a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
|
|
a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks
|
|
a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(),
|
|
a_data, (m * block_size, k * block_size))
|
|
b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device)
|
|
|
|
@parametrize("block_size", [2, 3])
|
|
@parametrize("index_dtype", [torch.int32, torch.int64])
|
|
@parametrize("noncontiguous", [True, False])
|
|
@skipCPUIfNoMklSparse
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_block_triangular_solve(self, device, dtype, index_dtype, block_size, noncontiguous):
|
|
def run_test(a, b, upper, transpose, unitriangular, op_out):
|
|
if unitriangular and self.device_type == 'cpu':
|
|
# TODO: When unitriangular=True results are not correct on CPU
|
|
return
|
|
|
|
if not upper and self.device_type == 'cpu':
|
|
# TODO: When upper=False some generated inputs might crash on CPU
|
|
return
|
|
|
|
actual = torch.triangular_solve(b, a, upper=upper, unitriangular=unitriangular, transpose=transpose)
|
|
actual_X = actual.solution
|
|
actual_A_clone = actual.cloned_coefficient
|
|
self.assertTrue(actual_A_clone.numel() == 0)
|
|
if a._nnz() == 0:
|
|
self.assertTrue(actual_X.isnan().all())
|
|
return
|
|
|
|
# TODO: replace with torch method when implemented to_dense() on block sparse tensor
|
|
a_bsr = sp.bsr_matrix(
|
|
(
|
|
a.values().cpu().numpy(),
|
|
a.col_indices().cpu().numpy(),
|
|
a.crow_indices().cpu().numpy(),
|
|
),
|
|
shape=a.shape,
|
|
)
|
|
expected_X, _ = torch.triangular_solve(
|
|
b,
|
|
torch.tensor(a_bsr.todense(), device=device),
|
|
transpose=transpose,
|
|
upper=upper,
|
|
unitriangular=unitriangular)
|
|
|
|
if expected_X.isnan().any():
|
|
# TODO: zeros on the diagonal are not handled for CPU path
|
|
# there's no way to query this info from MKL
|
|
if self.device_type == 'cuda' and not TEST_WITH_ROCM:
|
|
self.assertTrue(actual_X.isnan().any() or actual_X.isinf().any())
|
|
return
|
|
|
|
self.assertEqual(actual_X, expected_X)
|
|
|
|
out = torch.empty_like(b.mH if op_out and a.shape == b.shape else b)
|
|
torch.triangular_solve(
|
|
b, a,
|
|
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
|
|
)
|
|
self.assertEqual(out, actual_X)
|
|
self.assertEqual(out, expected_X)
|
|
|
|
for (m, k) in itertools.product([2, 3], [1, 3]):
|
|
nnz = random.randint(0, m * m)
|
|
if not noncontiguous:
|
|
a = self.genSparseCSRTensor((m * block_size, m * block_size), nnz,
|
|
dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a = a.to_sparse_bsr((block_size, block_size))
|
|
else:
|
|
a = self.genSparseCSRTensor((m, m), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
|
|
a_data = a_data.mT if noncontiguous else a_data # Test column-major blocks
|
|
a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(),
|
|
a_data, (m * block_size, m * block_size))
|
|
b = make_tensor((m * block_size, k), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
|
|
for (upper, unitriangular, transpose, op_out) in itertools.product([True, False], repeat=4):
|
|
run_test(a, b, upper, unitriangular, transpose, op_out)
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported")
|
|
@dtypes(torch.double)
|
|
def test_mm(self, device, dtype):
|
|
def test_shape(di, dj, dk, nnz0=None, nnz1=None):
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
def _test_addmm(t, x, y):
|
|
# TODO: addmm doesn't support strided result for sparse inputs.
|
|
# res = beta * t + alpha * (x @ y)
|
|
res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
|
|
expected = torch.addmm(t, x.to_dense(), y.to_dense(), beta=beta, alpha=alpha)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.addmm(t, x, y)
|
|
expected = torch.addmm(t, x.to_dense(), y.to_dense())
|
|
self.assertEqual(res, expected)
|
|
|
|
def _test_mm(x, y):
|
|
res = torch.mm(x, y)
|
|
expected = torch.mm(x.to_dense(), y.to_dense())
|
|
if x.layout is torch.strided or y.layout is torch.strided:
|
|
self.assertEqual(res.layout, torch.strided)
|
|
else:
|
|
self.assertEqual(res.layout, torch.sparse_csr)
|
|
self.assertEqual(res.to_dense(), expected)
|
|
|
|
def _test(t, x, y):
|
|
_test_addmm(t, x, y)
|
|
_test_mm(x, y)
|
|
|
|
if nnz0 is None:
|
|
nnz0 = random.randint(di * dk // 2, di * dk)
|
|
t = torch.randn(di, dj, dtype=dtype, device=device)
|
|
x = self.genSparseCSRTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
y = torch.randn(dk, dj, dtype=dtype, device=device)
|
|
_test(t, x, y)
|
|
|
|
if nnz1 is None:
|
|
nnz1 = random.randint(dk * dj // 2, dk * dj)
|
|
t = torch.randn(di, dj, dtype=dtype, device=device)
|
|
x = torch.randn(di, dk, dtype=dtype, device=device)
|
|
y = self.genSparseCSRTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
_test(t, x, y)
|
|
|
|
x_shape, y_shape = x.shape, y.shape
|
|
|
|
gen_csr_csc = [self.genSparseCSRTensor, self.genSparseCSCTensor]
|
|
|
|
# Test mm({CSR, CSC}, {CSR, CSC})
|
|
for gen_x, gen_y in itertools.product(gen_csr_csc, gen_csr_csc):
|
|
x = gen_x(x_shape, nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
y = gen_y(y_shape, nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
_test_mm(x, y)
|
|
|
|
for i in [2, 4]:
|
|
for j in [2, 4, 7]:
|
|
for k in [2, 3, 7]:
|
|
test_shape(i, j, k)
|
|
test_shape(4, 4, 4, 0, 0)
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCUDA(*floating_and_complex_types_and(
|
|
*[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [],
|
|
*[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else []))
|
|
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
|
|
def test_sparse_mm(self, device, dtype):
|
|
def test_shape(d1, d2, d3, nnz, transposed, index_dtype):
|
|
if transposed:
|
|
D = torch.randn(d3, d2, dtype=dtype, device=device).t_()
|
|
else:
|
|
D = torch.randn(d2, d3, dtype=dtype, device=device)
|
|
S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype)
|
|
S_dense = S.to_dense()
|
|
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
|
|
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
test_shape(7, 8, 9, 20, False, index_dtype)
|
|
test_shape(7, 8, 9, 20, True, index_dtype)
|
|
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCUDA(*floating_and_complex_types_and(
|
|
*[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [],
|
|
*[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else []))
|
|
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
|
|
def test_sparse_addmm(self, device, dtype):
|
|
def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None):
|
|
if alpha_beta is None:
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
else:
|
|
alpha, beta = alpha_beta
|
|
if broadcast:
|
|
D1 = make_tensor((), dtype=dtype, device=device)
|
|
else:
|
|
D1 = make_tensor([n, p], dtype=dtype, device=device)
|
|
D2 = make_tensor([m, p], dtype=dtype, device=device)
|
|
S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
S_dense = S.to_dense()
|
|
Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
|
|
Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha)
|
|
self.assertEqual(Y, Y_dense)
|
|
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
test_shape(7, 8, 9, 20, False, index_dtype, None)
|
|
test_shape(7, 8, 9, 20, True, index_dtype, None)
|
|
test_shape(7, 8, 9, 20, False, index_dtype, (1, 0))
|
|
test_shape(7, 8, 9, 20, True, index_dtype, (1, 0))
|
|
test_shape(7, 8, 9, 20, False, index_dtype, (1, 1))
|
|
test_shape(7, 8, 9, 20, True, index_dtype, (1, 1))
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(*floating_and_complex_types())
|
|
@precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6,
|
|
torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8})
|
|
@dtypesIfCUDA(*floating_types_and(torch.complex64,
|
|
*[torch.bfloat16] if SM80OrLater else [],
|
|
*[torch.half] if SM53OrLater else [],
|
|
*[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else []))
|
|
@skipCUDAIf(
|
|
not _check_cusparse_spgemm_available(),
|
|
"cuSparse Generic API SpGEMM is not available"
|
|
)
|
|
def test_addmm_all_sparse_csr(self, device, dtype):
|
|
M = torch.randn(10, 25, device=device).to(dtype)
|
|
m1 = torch.randn(10, 50, device=device).to(dtype)
|
|
m2 = torch.randn(50, 25, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse")
|
|
|
|
# Test 0-strided
|
|
M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25)
|
|
m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50)
|
|
m2 = torch.randn(50, 25, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse")
|
|
|
|
# Test beta=0, M=nan
|
|
M = torch.full((10, 25), float('nan'), device=device).to(dtype)
|
|
m1 = torch.randn(10, 50, device=device).to(dtype)
|
|
m2 = torch.randn(50, 25, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=torch.sparse_csr, mode="all_sparse")
|
|
|
|
# Test transpose
|
|
for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
|
|
def maybe_transpose(cond, m):
|
|
if not cond:
|
|
return m
|
|
return m.t().clone(memory_format=torch.contiguous_format).t()
|
|
|
|
M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
|
|
m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
|
|
m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=torch.sparse_csr, mode="all_sparse")
|
|
|
|
@onlyCPU
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(*floating_and_complex_types())
|
|
def test_addmm_dense_result(self, device, dtype):
|
|
M = torch.randn(10, 25, device=device).to(dtype)
|
|
m1 = torch.randn(10, 50, device=device).to(dtype)
|
|
m2 = torch.randn(50, 25, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="dense_result")
|
|
|
|
# Test 0-strided
|
|
M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25)
|
|
m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50)
|
|
m2 = torch.randn(50, 25, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="dense_result")
|
|
|
|
# Test beta=0, M=nan
|
|
M = torch.full((10, 25), float('nan'), device=device).to(dtype)
|
|
m1 = torch.randn(10, 50, device=device).to(dtype)
|
|
m2 = torch.randn(50, 25, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=torch.sparse_csr, mode="dense_result")
|
|
|
|
# Test transpose
|
|
for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
|
|
def maybe_transpose(cond, m):
|
|
if not cond:
|
|
return m
|
|
return m.t().clone(memory_format=torch.contiguous_format).t()
|
|
|
|
M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
|
|
m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
|
|
m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=torch.sparse_csr, mode="dense_result")
|
|
|
|
@parametrize("k", [0, 1, 8])
|
|
@parametrize("n", [0, 1, 10])
|
|
@parametrize("m", [0, 1, 25])
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCUDA(*floating_types_and(torch.complex64,
|
|
*[torch.bfloat16] if SM80OrLater else [],
|
|
*[torch.half] if SM53OrLater else [],
|
|
*[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else []))
|
|
@skipCUDAIf(
|
|
not _check_cusparse_spgemm_available(),
|
|
"cuSparse Generic API SpGEMM is not available"
|
|
)
|
|
@precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6,
|
|
torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8})
|
|
def test_addmm_sizes_all_sparse_csr(self, device, dtype, m, n, k):
|
|
M = torch.randn(n, m, device=device).to(dtype)
|
|
m1 = torch.randn(n, k, device=device).to(dtype)
|
|
m2 = torch.randn(k, m, device=device).to(dtype)
|
|
_test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse")
|
|
|
|
M = torch.randn(n, m, device=device).to(dtype).to_sparse_csr()
|
|
m1 = torch.randn(n, k + 1, device=device).to(dtype).to_sparse_csr()
|
|
m2 = torch.randn(k, m, device=device).to(dtype).to_sparse_csr()
|
|
self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.addmm(M, m1, m2))
|
|
self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.mm(m1, m2))
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(torch.float)
|
|
def test_addmm_errors(self, device, dtype):
|
|
# test that the errors are the same for dense and sparse versions
|
|
import re
|
|
|
|
def test1(*, is_sparse):
|
|
# shapes must be compatible for matrix multiplication
|
|
a = make_tensor((2, 3), dtype=dtype, device=device)
|
|
if is_sparse:
|
|
a_sparse = a.to_sparse_csr()
|
|
return torch.addmm(a, a_sparse, a)
|
|
else:
|
|
return torch.addmm(a, a, a)
|
|
|
|
def test2(*, is_sparse):
|
|
# mat2 must be a matrix
|
|
a = make_tensor((2, 3), dtype=dtype, device=device)
|
|
if is_sparse:
|
|
a_sparse = a.to_sparse_csr()
|
|
return torch.addmm(a, a_sparse, a.unsqueeze(0))
|
|
else:
|
|
return torch.addmm(a, a, a.unsqueeze(0))
|
|
|
|
def test3(*, is_sparse):
|
|
# the first input needs to be 1D or 2D
|
|
a = make_tensor((3, 3), dtype=dtype, device=device)
|
|
if is_sparse:
|
|
a_sparse = a.to_sparse_csr()
|
|
return torch.addmm(a.unsqueeze(0), a_sparse, a)
|
|
else:
|
|
return torch.addmm(a.unsqueeze(0), a, a)
|
|
|
|
for test in (test1, test2, test3):
|
|
try:
|
|
test(is_sparse=False)
|
|
except RuntimeError as msg:
|
|
with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
|
|
test(is_sparse=True)
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(torch.float)
|
|
def test_mm_errors(self, device, dtype):
|
|
# test that the errors are the same for dense and sparse versions
|
|
import re
|
|
|
|
def test1(*, is_sparse):
|
|
# shapes must be compatible for matrix multiplication
|
|
a = make_tensor((2, 3), dtype=dtype, device=device)
|
|
if is_sparse:
|
|
a_sparse = a.to_sparse_csr()
|
|
return torch.mm(a_sparse, a)
|
|
else:
|
|
return torch.mm(a, a)
|
|
|
|
def test2(*, is_sparse):
|
|
# mat2 must be a matrix
|
|
a = make_tensor((2, 3), dtype=dtype, device=device)
|
|
if is_sparse:
|
|
a_sparse = a.to_sparse_csr()
|
|
return torch.mm(a_sparse, a.unsqueeze(0))
|
|
else:
|
|
return torch.mm(a, a.unsqueeze(0))
|
|
|
|
for test in (test1, test2):
|
|
try:
|
|
test(is_sparse=False)
|
|
except RuntimeError as msg:
|
|
with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
|
|
test(is_sparse=True)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_add(self, device, dtype):
|
|
def _test_spadd_shape(nnz, shape):
|
|
# sparse.to_dense() uses torch.add internally so if torch.add is wrong,
|
|
# the dense tensor will be wrong but this test would still pass
|
|
# there's a separate test that checks for the correctness of the .to_dense() call
|
|
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
y = torch.randn(*shape, dtype=dtype, device=device)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, x, alpha=r)
|
|
expected = y + r * x.to_dense()
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous dense tensor
|
|
s = list(shape)
|
|
s[0] = shape[-1]
|
|
s[-1] = shape[0]
|
|
y = torch.randn(*s, dtype=torch.double, device=device)
|
|
y.transpose_(0, len(s) - 1)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, x, alpha=r)
|
|
expected = y + r * x.to_dense()
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
ns = [2, 5]
|
|
batch_shapes = [(), (2,), (2, 3)]
|
|
for b, m, n in itertools.product(batch_shapes, ns, ns):
|
|
_test_spadd_shape(0, (*b, m, n))
|
|
_test_spadd_shape(m * n // 2, (*b, m, n))
|
|
_test_spadd_shape(m * n, (*b, m, n))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_mul(self, device, dtype):
|
|
# TODO: This whole test should be migrated to OpInfos
|
|
def _test_spadd_shape(fn, nnz, shape):
|
|
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
|
|
# Forward comparison
|
|
res_sparse_sparse = fn(y, x)
|
|
res_dense_sparse = fn(y.to_dense(), x)
|
|
res_sparse_dense = fn(y, x.to_dense())
|
|
expected = fn(y.to_dense(), x.to_dense()).to_sparse_csr()
|
|
self.assertEqual(res_sparse_sparse, expected)
|
|
# TODO: While result of mul(dense, csr) is csr, it is not fully compressed.
|
|
# That means it may contain materialized zeros, since the dense argument
|
|
# is converted according to the sparsity pattern of csr. In the future
|
|
# we might require the result to be fully compressed.
|
|
self.assertEqual(res_dense_sparse.to_dense(), expected.to_dense())
|
|
self.assertEqual(res_sparse_dense.to_dense(), expected.to_dense())
|
|
|
|
# Grad comparison
|
|
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
z = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
|
|
|
|
# csr * csr -> csr with csr, csr gradients
|
|
x_a = x.clone().requires_grad_()
|
|
y_a = y.clone().requires_grad_()
|
|
|
|
fn(y_a, x_a).backward(z)
|
|
|
|
x_dense_a = x.to_dense().requires_grad_()
|
|
y_dense_a = y.to_dense().requires_grad_()
|
|
|
|
fn(y_dense_a, x_dense_a).backward(z.to_dense())
|
|
|
|
self.assertEqual(x_a.grad.layout, torch.sparse_csr)
|
|
self.assertEqual(y_a.grad.layout, torch.sparse_csr)
|
|
|
|
self.assertEqual(x_a.grad.to_dense(), x_dense_a.grad)
|
|
self.assertEqual(y_a.grad.to_dense(), y_dense_a.grad)
|
|
|
|
# TODO: Currently strided Tensors cannot have csr gradients
|
|
# dense * csr -> csr with csr, dense gradients
|
|
x_a = x.clone().requires_grad_()
|
|
y_a = y.to_dense().clone().requires_grad_()
|
|
err_msg = "Function MulBackward0 returned an invalid gradient at index 0 - expected layout Strided but got SparseCsr"
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
fn(y_a, x_a).backward(z)
|
|
|
|
# csr * dense -> csr with dense, csr gradients
|
|
x_a = x.to_dense().clone().requires_grad_()
|
|
y_a = y.clone().requires_grad_()
|
|
err_msg = "Function MulBackward0 returned an invalid gradient at index 1 - expected layout Strided but got SparseCsr"
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
fn(y_a, x_a).backward(z)
|
|
|
|
_test_spadd_shape(torch.mul, 100, [100, 100])
|
|
_test_spadd_shape(torch.mul, 0, [100, 100])
|
|
_test_spadd_shape(torch.mul, 100, [100, 1])
|
|
_test_spadd_shape(torch.mul, 100, [1, 100])
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_sparse_add(self, device, dtype):
|
|
def run_test(m, n, index_dtype):
|
|
|
|
if TEST_WITH_ROCM and dtype.is_complex:
|
|
self.skipTest("ROCm doesn't work with complex dtype correctly.")
|
|
|
|
alpha = random.random()
|
|
nnz1 = random.randint(0, m * n)
|
|
nnz2 = random.randint(0, m * n)
|
|
nnz3 = random.randint(0, m * n)
|
|
|
|
if TEST_WITH_ROCM:
|
|
# ROCm fails when nnz = 0
|
|
nnz1, nnz2, nnz3 = max(1, nnz1), max(1, nnz2), max(1, nnz3)
|
|
|
|
S1 = self.genSparseCSRTensor([m, n], nnz1, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
S2 = self.genSparseCSRTensor([m, n], nnz2, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
S3 = self.genSparseCSRTensor([m, n], nnz3, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
|
|
expected = torch.add(S1.to_dense(), S2.to_dense(), alpha=alpha)
|
|
actual = torch.add(S1, S2, alpha=alpha, out=S3)
|
|
|
|
self.assertEqual(actual.to_dense(), expected)
|
|
self.assertEqual(S3.to_dense(), expected)
|
|
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for m, n in itertools.product([3, 5], [3, 5]):
|
|
run_test(m, n, index_dtype)
|
|
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_sparse_add_errors(self, device, dtype):
|
|
def run_test(index_type):
|
|
a = self.genSparseCSRTensor((2, 2), 3, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
b = self.genSparseCSRTensor((2, 1), 2, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
with self.assertRaisesRegex(RuntimeError, "Expected input tensors to have the same shape"):
|
|
torch.add(a, b)
|
|
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
run_test(index_dtype)
|
|
|
|
@skipCPUIfNoMklSparse
|
|
@skipCUDAIf(
|
|
not _check_cusparse_triangular_solve_available(),
|
|
"cuSparse Generic API SpSV is not available"
|
|
)
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
|
|
torch.float64: 1e-8, torch.complex128: 1e-8})
|
|
def test_sparse_triangular_solve(self, device, dtype):
|
|
|
|
def run_test(n, k, upper, unitriangular, transpose, zero):
|
|
triangle_function = torch.triu if upper else torch.tril
|
|
make_A = torch.zeros if zero else make_tensor
|
|
A = make_A((n, n), dtype=dtype, device=device)
|
|
A = triangle_function(A)
|
|
A_sparse = A.to_sparse_csr()
|
|
B = make_tensor((n, k), dtype=dtype, device=device)
|
|
|
|
expected = torch.triangular_solve(B, A, upper=upper, unitriangular=unitriangular, transpose=transpose)
|
|
expected_X = expected.solution
|
|
|
|
actual = torch.triangular_solve(B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose)
|
|
actual_X = actual.solution
|
|
actual_A_clone = actual.cloned_coefficient
|
|
self.assertTrue(actual_A_clone.numel() == 0)
|
|
if A_sparse._nnz() == 0:
|
|
self.assertTrue(actual_X.isnan().all())
|
|
return
|
|
self.assertEqual(actual_X, expected_X)
|
|
|
|
# test out with C contiguous strides
|
|
out = torch.empty_strided((n, k), (k, 1), dtype=dtype, device=device)
|
|
torch.triangular_solve(
|
|
B, A_sparse,
|
|
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
|
|
)
|
|
self.assertEqual(out, expected_X)
|
|
|
|
# test out with F contiguous strides
|
|
out = torch.empty_strided((n, k), (1, n), dtype=dtype, device=device)
|
|
torch.triangular_solve(
|
|
B, A_sparse,
|
|
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
|
|
)
|
|
self.assertEqual(out, expected_X)
|
|
self.assertEqual(out.stride(), (1, n))
|
|
|
|
# test out with discontiguous strides
|
|
out = torch.empty_strided((2 * n, k), (1, 2 * n), dtype=dtype, device=device)[::2]
|
|
if n > 0 and k > 0:
|
|
self.assertFalse(out.is_contiguous())
|
|
self.assertFalse(out.t().is_contiguous())
|
|
before_stride = out.stride()
|
|
torch.triangular_solve(
|
|
B, A_sparse,
|
|
upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
|
|
)
|
|
self.assertEqual(out, expected_X)
|
|
self.assertEqual(out.stride(), before_stride)
|
|
|
|
ks = [0, 1, 3]
|
|
ns = [5, 3, 0]
|
|
for (k, n), (upper, unitriangular, transpose, zero) in itertools.product(itertools.product(ks, ns),
|
|
itertools.product([True, False], repeat=4)):
|
|
run_test(n, k, upper, unitriangular, transpose, zero)
|
|
|
|
@skipCUDAIfRocm
|
|
@skipCUDAIf(
|
|
not _check_cusparse_sddmm_available(),
|
|
"cuSparse Generic API SDDMM is not available"
|
|
)
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
|
|
torch.float64: 1e-8, torch.complex128: 1e-8})
|
|
def test_sampled_addmm(self, device, dtype):
|
|
def run_test(c, a, b, op_a, op_b, *, alpha=None, beta=None):
|
|
if dtype.is_complex:
|
|
alpha = random.random() + 0.3j if alpha is None else alpha
|
|
beta = random.random() + 0.6j if beta is None else beta
|
|
else:
|
|
alpha = random.random() if alpha is None else alpha
|
|
beta = random.random() if beta is None else beta
|
|
|
|
if op_a and a.shape == b.shape:
|
|
a = a.mH
|
|
if op_b and a.shape == b.shape:
|
|
b = b.mH
|
|
|
|
actual = torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta)
|
|
|
|
out = torch.sparse_csr_tensor(
|
|
*map(torch.clone, (actual.crow_indices(), actual.col_indices())),
|
|
torch.empty_like(actual.values()),
|
|
size=actual.shape
|
|
)
|
|
torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta, out=out)
|
|
|
|
spy_c = torch.sparse_csr_tensor(c.crow_indices(), c.col_indices(), torch.ones_like(c.values()), size=c.shape)
|
|
expected = alpha * (a @ b) * spy_c.to_dense() + beta * c.to_dense()
|
|
self.assertEqual(actual.to_dense(), out.to_dense())
|
|
self.assertEqual(actual.to_dense(), expected)
|
|
|
|
mnk = itertools.product([2, 5], repeat=3)
|
|
batch_shapes = [(), (2,), (2, 3)] if self.device_type == 'cuda' else [(), ]
|
|
tf = [True, False]
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
for (m, n, k), b, noncontiguous, bcast_c in itertools.product(mnk, batch_shapes, tf, tf):
|
|
if bcast_c and len(b) == 0:
|
|
continue
|
|
nnz = random.randint(0, m * n)
|
|
c_batch = () if bcast_c else b
|
|
c = self.genSparseCSRTensor((*c_batch, m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
a = make_tensor((*b, m, k), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
b = make_tensor((*b, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
|
|
for op_a, op_b in itertools.product([True, False], repeat=2):
|
|
run_test(c, a, b, op_a, op_b)
|
|
|
|
@skipCUDAIfRocm
|
|
@skipCUDAIf(
|
|
not _check_cusparse_sddmm_available(),
|
|
"cuSparse Generic API SDDMM is not available"
|
|
)
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_sampled_addmm_autograd(self, device, dtype):
|
|
from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm
|
|
|
|
samples = list(sample_inputs_sparse_sampled_addmm(None, device, dtype, requires_grad=True))
|
|
|
|
for sample, dense_covector in zip(samples, [True, False]):
|
|
c = sample.input
|
|
a = sample.args[0]
|
|
b = sample.args[1]
|
|
|
|
# Compute sparse result
|
|
output = torch.sparse.sampled_addmm(c, a, b, **sample.kwargs)
|
|
covector = torch.randn_like(output).to_dense() if dense_covector else torch.randn_like(output)
|
|
output.backward(covector)
|
|
|
|
# Compute dense result and compare with sparse result
|
|
c1, a1, b1 = map(lambda x: x.detach().to_dense().requires_grad_(True), [c, a, b])
|
|
dense_output = sample.kwargs['alpha'] * (a1 @ b1) * torch.ones_like(c).to_dense() + sample.kwargs['beta'] * c1
|
|
self.assertEqual(output, dense_output)
|
|
dense_covector = covector.to_dense()
|
|
dense_output.backward(dense_covector)
|
|
self.assertEqual(c.grad, c1.grad)
|
|
self.assertEqual(a.grad, a1.grad)
|
|
self.assertEqual(b.grad, b1.grad)
|
|
|
|
@skipCUDAIfRocm
|
|
@onlyCUDA
|
|
@skipCUDAIf(True, "Causes CUDA memory exception, see https://github.com/pytorch/pytorch/issues/72177")
|
|
@skipCUDAIf(
|
|
not _check_cusparse_sddmm_available(),
|
|
"cuSparse Generic API SDDMM is not available"
|
|
)
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
@precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
|
|
torch.float64: 1e-8, torch.complex128: 1e-8})
|
|
def test_sampled_addmm_zero_sized(self, device, dtype):
|
|
def run_test(c, a, b):
|
|
actual = torch.sparse.sampled_addmm(c, a, b)
|
|
self.assertEqual(actual.shape, c.shape)
|
|
|
|
for m, n, k in itertools.product([0, 5], repeat=3):
|
|
c = torch.empty(m, n, dtype=dtype, device=device, layout=torch.sparse_csr)
|
|
a = make_tensor((m, k), dtype=dtype, device=device)
|
|
b = make_tensor((k, n), dtype=dtype, device=device)
|
|
run_test(c, a, b)
|
|
|
|
@skipCUDAIfRocm
|
|
@onlyCUDA
|
|
@skipCUDAIf(
|
|
not _check_cusparse_sddmm_available(),
|
|
"cuSparse Generic API SDDMM is not available"
|
|
)
|
|
@dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
|
|
def test_sampled_addmm_errors(self, device, dtype):
|
|
# test that the errors are the same for dense and sparse sampled versions
|
|
# import re
|
|
|
|
# shapes must be compatible for matrix multiplication
|
|
a = make_tensor((2, 3), dtype=dtype, device=device)
|
|
a_sparse = a.to_sparse_csr()
|
|
with self.assertRaisesRegex(RuntimeError, r"cannot be multiplied"):
|
|
torch.sparse.sampled_addmm(a_sparse, a, a)
|
|
|
|
# mat1 must be a matrix
|
|
with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to be a matrix"):
|
|
torch.sparse.sampled_addmm(a_sparse, a[..., 0, :], a)
|
|
|
|
# mat2 must be a matrix
|
|
with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to be a matrix"):
|
|
torch.sparse.sampled_addmm(a_sparse, a, a[..., 0, :])
|
|
|
|
a = make_tensor((2, 2), dtype=dtype, device=device)
|
|
b = make_tensor((3, 3), dtype=dtype, device=device)
|
|
b_sparse = b.to_sparse_csr()
|
|
with self.assertRaisesRegex(RuntimeError, r"self.shape\[-2\] must match mat1.shape\[-2\]"):
|
|
torch.sparse.sampled_addmm(b_sparse, a, a)
|
|
|
|
b = make_tensor((2, 3), dtype=dtype, device=device)
|
|
b_sparse = b.to_sparse_csr()
|
|
with self.assertRaisesRegex(RuntimeError, r"self.shape\[-1\] must match mat2.shape\[-1\]"):
|
|
torch.sparse.sampled_addmm(b_sparse, a, a)
|
|
|
|
a = make_tensor((2, 2), dtype=dtype, device=device)
|
|
a_sparse = a.to_sparse_csr()
|
|
with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to have strided layout"):
|
|
torch.sparse.sampled_addmm(a_sparse, a_sparse, a_sparse)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to have strided layout"):
|
|
torch.sparse.sampled_addmm(a_sparse, a, a_sparse)
|
|
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_coo_csr_conversion(self, device, dtype):
|
|
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
|
|
size = (m, n)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
coo_sparse = dense.to_sparse()
|
|
csr_sparse = coo_sparse.to_sparse_csr()
|
|
|
|
self.assertEqual(csr_sparse.to_dense(), dense)
|
|
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_csr_coo_conversion(self, device, dtype):
|
|
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
|
|
size = (m, n)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
csr_sparse = dense.to_sparse_csr()
|
|
coo_sparse = csr_sparse.to_sparse()
|
|
|
|
self.assertEqual(coo_sparse.to_dense(), dense)
|
|
|
|
# Currently, there is no rule in PyTorch for filling zeros in the outputs
|
|
# from operations on Sparse CSR tensors. Hence only those operators are supported
|
|
# which have 0->0 correspondence, example: sin(0) = 0, tan(0) = 0 but
|
|
# cos(0) = 1 (and hence it's not supported).
|
|
# Note: here, we do this test only for unary operators
|
|
@ops(sparse_csr_unary_ufuncs)
|
|
def test_zero_to_zero_correspondence_unary(self, device, dtype, op):
|
|
zero = torch.zeros((1, 2), dtype=dtype, device=device)
|
|
tensor_explicit_zeros = torch.sparse_csr_tensor([0, 1], [1], [0], dtype=dtype, device=device)
|
|
|
|
output_zero = op(zero)
|
|
expected_zero = zero.to(output_zero.dtype)
|
|
|
|
output_explicit_zeros = op(tensor_explicit_zeros).to_dense()
|
|
expected_explicit_zeros = tensor_explicit_zeros.to_dense().to(output_explicit_zeros.dtype)
|
|
|
|
for (output, expected) in [
|
|
(output_zero, expected_zero),
|
|
(output_explicit_zeros, expected_explicit_zeros)
|
|
]:
|
|
self.assertEqual(output, expected, f"This operator ({op.name}) should not be supported for "
|
|
"Sparse CSR as it breaks 0->0 correspondence.")
|
|
|
|
for inp in [zero.to_sparse_csr(), tensor_explicit_zeros]:
|
|
self.assertEqual(op(inp).values().numel(), inp.values().numel(),
|
|
f"{op.name} fails to preserve sparsity pattern.")
|
|
|
|
@ops(sparse_csr_unary_ufuncs)
|
|
def test_sparse_csr_unary_out(self, device, dtype, op):
|
|
samples = op.sample_inputs(device, dtype)
|
|
|
|
if not op.supports_out:
|
|
self.skipTest("Skipped! Out not supported")
|
|
|
|
for sample in samples:
|
|
assert torch.is_tensor(sample.input)
|
|
# Sparse CSR only supports 2D tensors as inputs
|
|
# Fail early to prevent silent success with this test
|
|
if sample.input.ndim != 2:
|
|
raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
|
|
|
|
sample.input = sample.input.to_sparse_csr()
|
|
expect = op(sample.input, *sample.args, **sample.kwargs)
|
|
|
|
out = self.genSparseCSRTensor(sample.input.size(), sample.input._nnz(),
|
|
device=sample.input.device, dtype=expect.dtype,
|
|
index_dtype=sample.input.crow_indices().dtype)
|
|
op(sample.input, *sample.args, **sample.kwargs, out=out)
|
|
|
|
self.assertEqual(out, expect)
|
|
|
|
@ops(sparse_csr_unary_ufuncs)
|
|
def test_sparse_csr_unary_inplace(self, device, dtype, op):
|
|
samples = op.sample_inputs(device, dtype)
|
|
|
|
if op.inplace_variant is None:
|
|
self.skipTest("Skipped! Inplace variant not supported!")
|
|
|
|
for sample in samples:
|
|
assert torch.is_tensor(sample.input)
|
|
# Sparse CSR only supports 2D tensors as inputs
|
|
# Fail early to prevent silent success with this test
|
|
if sample.input.ndim != 2:
|
|
raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
|
|
|
|
sample.input = sample.input.to_sparse_csr()
|
|
expect = op(sample.input, *sample.args, **sample.kwargs)
|
|
|
|
if not torch.can_cast(expect.dtype, dtype):
|
|
with self.assertRaisesRegex(RuntimeError, "result type"):
|
|
op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
|
|
continue
|
|
|
|
if sample.input.is_complex() and op.name == "abs":
|
|
with self.assertRaisesRegex(RuntimeError, "not supported"):
|
|
op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
|
|
continue
|
|
|
|
actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
|
|
|
|
self.assertIs(actual, sample.input)
|
|
self.assertEqual(actual, expect)
|
|
|
|
@ops(sparse_csr_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble])
|
|
def test_autograd_sparse_csr_unary(self, device, dtype, op):
|
|
if op.name not in UNARY_EWISE_CSR_ALLOW_AUTOGRAD:
|
|
self.skipTest(f"Skipped! Unary op {op.name} not supported with CSR input and autograd")
|
|
|
|
samples = list(op.sample_inputs(device, dtype))
|
|
|
|
# Fail early to prevent silent success with this test
|
|
ndims_equals_2d = (s.input.ndim == 2 for s in samples)
|
|
if not any(ndims_equals_2d):
|
|
raise ValueError("Expected at least one 2D tensor in samples.")
|
|
|
|
for sample in samples:
|
|
sparse_input = sample.input.to_sparse_csr().requires_grad_(True)
|
|
|
|
def fn(input):
|
|
output = op.gradcheck_wrapper(op.get_op(), input, *sample.args, **sample.kwargs)
|
|
if sample.output_process_fn_grad is not None:
|
|
return sample.output_process_fn_grad(output)
|
|
return output
|
|
|
|
# Compute sparse result
|
|
output = fn(sparse_input)
|
|
covector = torch.randn_like(output)
|
|
output.backward(covector)
|
|
self.assertTrue(torch.is_tensor(sparse_input.grad))
|
|
self.assertTrue(sparse_input.grad.is_sparse_csr)
|
|
|
|
# Compute dense result and compare with sparse result
|
|
dense_input = sparse_input.detach().to_dense().requires_grad_(True)
|
|
dense_output = fn(dense_input)
|
|
dense_covector = covector.to_dense()
|
|
dense_output.backward(dense_covector)
|
|
self.assertEqual(sparse_input.grad, dense_input.grad)
|
|
|
|
@skipCUDAIfRocm
|
|
@skipCUDAIf(
|
|
not _check_cusparse_sddmm_available(),
|
|
"cuSparse Generic API SDDMM is not available"
|
|
)
|
|
@dtypes(torch.float64)
|
|
def test_autograd_dense_output_addmm(self, device, dtype):
|
|
from torch.testing._internal.common_methods_invocations import sample_inputs_addmm
|
|
|
|
samples = list(sample_inputs_addmm(None, device, dtype, requires_grad=True))
|
|
|
|
# Fail early to prevent silent success with this test
|
|
ndims_equals_2d = (s.args[0].ndim == 2 for s in samples)
|
|
if not any(ndims_equals_2d):
|
|
raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.")
|
|
|
|
for sample in samples:
|
|
a = sample.args[0].relu().to_sparse_csr()
|
|
|
|
# This path tests the autograd path wrt dense inputs
|
|
for addmm in [torch.addmm, torch.sparse.addmm]:
|
|
|
|
def fn(c, b):
|
|
output = addmm(c, a, b, **sample.kwargs)
|
|
if sample.output_process_fn_grad is not None:
|
|
return sample.output_process_fn_grad(output)
|
|
return output
|
|
|
|
self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True))
|
|
|
|
# noncontiguous
|
|
c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
|
|
b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
|
|
self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True))
|
|
|
|
# Now test the autograd path wrt sparse inputs
|
|
for reverse in [True, False]:
|
|
c, b = sample.input, sample.args[1]
|
|
if reverse and a.shape != b.shape:
|
|
continue
|
|
|
|
def fn(a):
|
|
inputs = (c, b, a) if reverse else (c, a, b)
|
|
output = addmm(*inputs, **sample.kwargs)
|
|
if sample.output_process_fn_grad is not None:
|
|
return sample.output_process_fn_grad(output)
|
|
return output
|
|
|
|
# gradcheck doesn't work for sparse CSR yet, compare against dense path
|
|
# Compute sparse result
|
|
a = a.detach().requires_grad_(True)
|
|
output = fn(a)
|
|
covector = torch.randn_like(output)
|
|
output.backward(covector)
|
|
self.assertTrue(torch.is_tensor(a.grad))
|
|
if addmm == torch.sparse.addmm:
|
|
self.assertTrue(a.grad.is_sparse_csr)
|
|
else:
|
|
self.assertTrue(a.grad.layout == torch.strided)
|
|
|
|
# Compute dense result and compare with sparse result
|
|
dense_a = a.detach().to_dense().requires_grad_(True)
|
|
dense_output = fn(dense_a)
|
|
self.assertEqual(output, dense_output)
|
|
dense_covector = covector.to_dense()
|
|
dense_output.backward(dense_covector)
|
|
|
|
if addmm == torch.sparse.addmm:
|
|
self.assertEqual(a.grad, dense_a.grad.sparse_mask(a))
|
|
else:
|
|
self.assertEqual(a.grad, dense_a.grad)
|
|
|
|
@skipCUDAIfRocm
|
|
@skipCPUIfNoMklSparse
|
|
@dtypes(torch.float64)
|
|
def test_autograd_dense_output_addmv(self, device, dtype):
|
|
from torch.testing._internal.common_methods_invocations import sample_inputs_addmv
|
|
|
|
samples = list(sample_inputs_addmv(None, device, dtype, requires_grad=True))
|
|
|
|
# Fail early to prevent silent success with this test
|
|
ndims_equals_2d = (s.args[0].ndim == 2 for s in samples)
|
|
if not any(ndims_equals_2d):
|
|
raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.")
|
|
|
|
for sample in samples:
|
|
# TODO: Remove detach once we have autograd support for CSR input
|
|
a = sample.args[0].to_sparse_csr().detach()
|
|
|
|
def fn(c, b):
|
|
output = torch.addmv(c, a, b, **sample.kwargs)
|
|
if sample.output_process_fn_grad is not None:
|
|
return sample.output_process_fn_grad(output)
|
|
return output
|
|
|
|
self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True))
|
|
|
|
# noncontiguous
|
|
c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
|
|
b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
|
|
self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True))
|
|
|
|
@ops(binary_ops_with_dense_output, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, ])
|
|
def test_autograd_dense_output(self, device, dtype, op):
|
|
if op.name == "mv" and no_mkl_sparse and self.device_type == 'cpu':
|
|
self.skipTest("MKL Sparse is not available")
|
|
if op.name == "mv" and TEST_WITH_ROCM and self.device_type == 'cuda':
|
|
# mv currently work only on CUDA
|
|
self.skipTest("ROCm is not supported")
|
|
|
|
samples = list(op.sample_inputs(device, dtype, requires_grad=True))
|
|
|
|
# Fail early to prevent silent success with this test
|
|
ndims_equals_2d = (s.input.ndim == 2 for s in samples)
|
|
if not any(ndims_equals_2d):
|
|
raise ValueError("Expected at least one 2D tensor in samples.")
|
|
|
|
# Here we assume that the signature is op(sparse_input, dense_input) -> dense_output
|
|
for sample in samples:
|
|
# TODO: Remove detach once we have autograd support for CSR input
|
|
sparse_input = sample.input.to_sparse_csr().detach()
|
|
|
|
def fn(*args):
|
|
output = op.gradcheck_wrapper(op.get_op(), sparse_input, *args, **sample.kwargs)
|
|
if sample.output_process_fn_grad is not None:
|
|
return sample.output_process_fn_grad(output)
|
|
return output
|
|
|
|
self.assertTrue(torch.autograd.gradcheck(fn, sample.args, fast_mode=True))
|
|
|
|
# noncontiguous
|
|
args = [make_tensor(a.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) for a in sample.args]
|
|
self.assertTrue(torch.autograd.gradcheck(fn, args, fast_mode=True))
|
|
|
|
@dtypes(*all_types_and_complex())
|
|
def test_direct_coo_csr_conversion(self, device, dtype):
|
|
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
|
|
size = (m, n)
|
|
dense = make_tensor(size, dtype=dtype, device=device)
|
|
coo_sparse = dense.to_sparse_coo()
|
|
|
|
self.assertEqual(coo_sparse.to_sparse_csr().to_sparse_coo(), coo_sparse)
|
|
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_sum(self, device, dtype):
|
|
def run_test(shape, nnz, index_type):
|
|
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
self.assertEqual(a.sum(), a.values().sum())
|
|
if dtype in floating_types():
|
|
a.requires_grad_(True)
|
|
a.sum().backward()
|
|
self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device))
|
|
for shape, index_dtype in itertools.product(
|
|
[(10, 5), (10, 10)],
|
|
[torch.int32, torch.int64]):
|
|
run_test(shape, 0, index_dtype)
|
|
run_test(shape, max(shape), index_dtype)
|
|
run_test(shape, shape[0] * shape[1], index_dtype)
|
|
|
|
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_transpose(self, device, dtype):
|
|
|
|
def run_test(shape, nnz, index_type):
|
|
# CSR
|
|
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
self.assertEqual(a.layout, torch.sparse_csr)
|
|
|
|
# CSC
|
|
a_t = a.transpose(0, 1)
|
|
self.assertEqual(a_t.layout, torch.sparse_csc)
|
|
|
|
# CSR
|
|
a_v = a.transpose(0, 0)
|
|
self.assertEqual(a_v.layout, torch.sparse_csr)
|
|
|
|
# CSR again
|
|
a_t_t = a_t.transpose(0, 1)
|
|
self.assertEqual(a_t_t.layout, torch.sparse_csr)
|
|
|
|
# TODO: Do we want to extend view properties to members as well?
|
|
# These checks are based on is_view_of from test_view_ops.py
|
|
self.assertTrue(a_t._is_view())
|
|
self.assertTrue(a_v._is_view())
|
|
self.assertTrue(a_t_t._is_view())
|
|
|
|
self.assertTrue(a_t._base is a)
|
|
self.assertTrue(a_v._base is a)
|
|
self.assertTrue(a_t_t._base is a)
|
|
|
|
self.assertFalse(a_t is a)
|
|
self.assertFalse(a_v is a)
|
|
self.assertFalse(a_t_t is a)
|
|
|
|
self.assertEqual(a.to_dense().transpose(0, 1), a_t.to_dense())
|
|
self.assertEqual(a.to_dense(), a_v.to_dense())
|
|
self.assertEqual(a.to_dense(), a_t_t.to_dense())
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "torch.transpose_: in-place transposition is not supported"):
|
|
a.transpose_(0, 0)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "torch.transpose_: in-place transposition is not supported"):
|
|
a.transpose_(0, 1)
|
|
|
|
|
|
for shape, index_dtype in itertools.product(
|
|
[(10, 5), (10, 10)],
|
|
[torch.int32, torch.int64]):
|
|
run_test(shape, 0, index_dtype)
|
|
run_test(shape, max(shape), index_dtype)
|
|
run_test(shape, shape[0] * shape[1], index_dtype)
|
|
|
|
# TODO: This is a stopgap for a rigorous extension of our autograd tests
|
|
# to test the functionality of detach
|
|
@skipMeta
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_exercise_detach(self, device, dtype):
|
|
shape = (3, 3)
|
|
nnz = 4
|
|
for index_dtype in [torch.int32, torch.int64]:
|
|
inp = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
|
|
detached_inp = inp.detach()
|
|
self.assertEqual(inp, detached_inp)
|
|
|
|
def _convert_to_layout(self, a, target_layout, blocksize=(2, 2)):
|
|
"""
|
|
Helper function to call the correct layout conversion
|
|
with reasonable defaults for the block size. Clearly there
|
|
is a need for a to.layout overload.
|
|
"""
|
|
if target_layout is torch.sparse_csr:
|
|
result = a.to_sparse_csr()
|
|
elif target_layout is torch.sparse_csc:
|
|
result = a.to_sparse_csc()
|
|
elif target_layout is torch.sparse_bsr:
|
|
result = a.to_sparse_bsr(blocksize)
|
|
elif target_layout is torch.sparse_bsc:
|
|
result = a.to_sparse_bsc(blocksize)
|
|
else:
|
|
raise NotImplementedError(repr(a))
|
|
assert result.layout is target_layout
|
|
# to_sparse_xyz methods use unsafe construction of sparse
|
|
# compressed tensors. Here we explicitly validate the results
|
|
# to make sure that the sparse tensors are consistent with the
|
|
# corresponding sparse tensor invariants.
|
|
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[result.layout]
|
|
compressed_indices, plain_indices = compressed_indices_mth(result), plain_indices_mth(result)
|
|
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, result.values(),
|
|
result.shape, result.layout)
|
|
return result
|
|
|
|
def _construct_sp_matrix(self, tensor, layout, blocksize=(2, 2)):
|
|
if tensor.layout in [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.strided]:
|
|
tensor = tensor.to_dense()
|
|
else:
|
|
raise NotImplementedError(repr(tensor))
|
|
if layout is torch.sparse_csr:
|
|
return sp.csr_matrix(tensor.cpu().numpy())
|
|
if layout is torch.sparse_csc:
|
|
return sp.csc_matrix(tensor.cpu().numpy())
|
|
if layout is torch.sparse_bsr:
|
|
return sp.bsr_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices()
|
|
# No native scipy BSC support?
|
|
raise NotImplementedError(repr(tensor))
|
|
|
|
@skipMeta
|
|
@all_sparse_compressed_layouts('to_layout')
|
|
@all_sparse_compressed_layouts('from_layout')
|
|
def test_compressed_layout_conversions_coverage(self, device, from_layout, to_layout):
|
|
"""
|
|
This test performs a smoke test for covered conversion and verifies
|
|
that an exception is thrown for unsupported conversions.
|
|
"""
|
|
|
|
def _to_from_layout(layout_a, layout_b):
|
|
a = make_tensor((6, 10), dtype=torch.float, device=device)
|
|
expect_error = (layout_a in [torch.sparse_csc, torch.sparse_bsc]
|
|
or layout_b in [torch.sparse_csc, torch.sparse_bsc])
|
|
expect_error = expect_error or (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_bsr)
|
|
expect_error = expect_error or (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr)
|
|
# CSC to CSR conversion is supported
|
|
if layout_a is torch.sparse_csc and layout_b is torch.sparse_csr:
|
|
expect_error = False
|
|
# CSC to CSC conversion is supported
|
|
if layout_a is torch.sparse_csc and layout_b is torch.sparse_csc:
|
|
expect_error = False
|
|
if expect_error:
|
|
with self.assertRaises(RuntimeError):
|
|
b = self._convert_to_layout(a, layout_a)
|
|
self._convert_to_layout(b, layout_b)
|
|
else:
|
|
b = self._convert_to_layout(a, layout_a)
|
|
c = self._convert_to_layout(b, layout_b)
|
|
if (layout_a is not torch.sparse_bsr and layout_b is not torch.sparse_bsr):
|
|
self.assertEqual(a.to_dense(), c.to_dense())
|
|
|
|
_to_from_layout(from_layout, to_layout)
|
|
|
|
@skipMeta
|
|
@all_sparse_compressed_layouts()
|
|
def test_dense_to_from_sparse_compressed(self, device, layout):
|
|
"""
|
|
This test tests conversion from dense to/from CSR and CSC
|
|
by comparing to SciPy's implementation.
|
|
|
|
TODO: Eventually this is meant to be merged into test_compressed_layout_conversions_coverage
|
|
"""
|
|
if layout is torch.sparse_bsc:
|
|
# TODO: Remove this once support has been enabled
|
|
return
|
|
|
|
shapes = [(6, 10), (0, 10), (6, 0), (0, 0)]
|
|
|
|
blocksizes = [(2, 2)]
|
|
if layout is torch.sparse_bsr:
|
|
blocksizes += [(3, 5), (6, 10)]
|
|
|
|
for shape, blocksize in itertools.product(shapes, blocksizes):
|
|
dense = make_tensor(shape, dtype=torch.float, device=device)
|
|
dense = dense.relu() # Introduce some sparsity
|
|
sp_matrix = self._construct_sp_matrix(dense, layout, blocksize=blocksize)
|
|
pt_matrix = self._convert_to_layout(dense, layout, blocksize=blocksize)
|
|
|
|
compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
|
|
|
|
self.assertEqual(layout, pt_matrix.layout)
|
|
self.assertEqual(sp_matrix.shape, pt_matrix.shape)
|
|
self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
|
|
self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
|
|
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())
|
|
|
|
self.assertEqual(dense, pt_matrix.to_dense())
|
|
|
|
@skipMeta
|
|
@all_sparse_compressed_layouts()
|
|
@coalescedonoff
|
|
@dtypes(torch.double)
|
|
def test_sparse_to_sparse_compressed(self, device, dtype, coalesced, layout):
|
|
"""
|
|
This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC
|
|
by comparing to SciPy's implementation.
|
|
|
|
TODO: Eventually this is meant to be merged into test_compressed_layout_conversions_coverage
|
|
"""
|
|
if layout is torch.sparse_bsc:
|
|
# TODO: Remove this once support has been enabled
|
|
return
|
|
if layout is torch.sparse_bsr:
|
|
# TODO: Remove this once support has been enabled
|
|
return
|
|
|
|
for shape in [(0, 10), (6, 0), (6, 10), (0, 0)]:
|
|
sparse_dim = 2
|
|
nnz = shape[0] * shape[1] // 2
|
|
sparse, _, _ = self.genSparseTensor(shape, sparse_dim, nnz, coalesced, device, dtype)
|
|
sp_matrix = self._construct_sp_matrix(sparse, layout)
|
|
pt_matrix = self._convert_to_layout(sparse, layout)
|
|
|
|
compressed_indices_mth = {
|
|
torch.sparse_csr: torch.Tensor.crow_indices,
|
|
torch.sparse_csc: torch.Tensor.ccol_indices,
|
|
}[layout]
|
|
|
|
plain_indices_mth = {
|
|
torch.sparse_csr: torch.Tensor.col_indices,
|
|
torch.sparse_csc: torch.Tensor.row_indices,
|
|
}[layout]
|
|
|
|
self.assertEqual(layout, pt_matrix.layout)
|
|
self.assertEqual(sp_matrix.shape, pt_matrix.shape)
|
|
self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
|
|
self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
|
|
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())
|
|
|
|
sparse_csc = sparse.to_sparse_csc()
|
|
sp_matrix = self._construct_sp_matrix(sparse_csc, layout)
|
|
pt_matrix = self._convert_to_layout(sparse_csc, layout)
|
|
|
|
self.assertEqual(layout, pt_matrix.layout)
|
|
self.assertEqual(sp_matrix.shape, pt_matrix.shape)
|
|
self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
|
|
self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
|
|
self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())
|
|
|
|
|
|
# e.g., TestSparseCSRCPU and TestSparseCSRCUDA
|
|
instantiate_device_type_tests(TestSparseCSR, globals())
|
|
instantiate_device_type_tests(TestSparseCompressed, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|