pytorch/caffe2/utils/filler.h
Nikita Shulga 4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00

142 lines
3.9 KiB
C++

#ifndef CAFFE2_FILLER_H_
#define CAFFE2_FILLER_H_
#include <sstream>
#include "caffe2/core/logging.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// TODO: replace filler distribution enum with a better abstraction
enum FillerDistribution { FD_UNIFORM, FD_FIXEDSUM, FD_SYNTHETIC };
class TensorFiller {
public:
template <class Type, class Context>
void Fill(Tensor* tensor, Context* context) const {
CAFFE_ENFORCE(context, "context is null");
CAFFE_ENFORCE(tensor, "tensor is null");
auto min = (min_ < std::numeric_limits<Type>::min())
? std::numeric_limits<Type>::min()
: static_cast<Type>(min_);
// NOLINTNEXTLINE(clang-diagnostic-implicit-const-int-float-conversion)
auto max = (max_ > std::numeric_limits<Type>::max())
? std::numeric_limits<Type>::max()
: static_cast<Type>(max_);
CAFFE_ENFORCE_LE(min, max);
Tensor temp_tensor(shape_, Context::GetDeviceType());
std::swap(*tensor, temp_tensor);
Type* data = tensor->template mutable_data<Type>();
// select distribution
switch (dist_) {
case FD_UNIFORM: {
math::RandUniform<Type, Context>(
tensor->numel(), min, max, data, context);
break;
}
case FD_FIXEDSUM: {
auto fixed_sum = static_cast<Type>(fixed_sum_);
CAFFE_ENFORCE_LE(min * tensor->numel(), fixed_sum);
CAFFE_ENFORCE_GE(max * tensor->numel(), fixed_sum);
math::RandFixedSum<Type, Context>(
tensor->numel(), min, max, fixed_sum_, data, context);
break;
}
case FD_SYNTHETIC: {
math::RandSyntheticData<Type, Context>(
tensor->numel(), min, max, data, context);
break;
}
}
}
TensorFiller& Dist(FillerDistribution dist) {
dist_ = dist;
return *this;
}
template <class Type>
TensorFiller& Min(Type min) {
min_ = (double)min;
return *this;
}
template <class Type>
TensorFiller& Max(Type max) {
max_ = (double)max;
return *this;
}
template <class Type>
TensorFiller& FixedSum(Type fixed_sum) {
dist_ = FD_FIXEDSUM;
fixed_sum_ = (double)fixed_sum;
return *this;
}
// A helper function to construct the lengths vector for sparse features
// We try to pad least one index per batch unless the total_length is 0
template <class Type>
TensorFiller& SparseLengths(Type total_length) {
return FixedSum(total_length)
.Min(std::min(static_cast<Type>(1), total_length))
.Max(total_length);
}
// a helper function to construct the segments vector for sparse features
template <class Type>
TensorFiller& SparseSegments(Type max_segment) {
CAFFE_ENFORCE(dist_ != FD_FIXEDSUM);
return Min(0).Max(max_segment).Dist(FD_SYNTHETIC);
}
TensorFiller& Shape(const std::vector<int64_t>& shape) {
shape_ = shape;
return *this;
}
template <class Type>
TensorFiller(const std::vector<int64_t>& shape, Type fixed_sum)
: shape_(shape), dist_(FD_FIXEDSUM), fixed_sum_((double)fixed_sum) {}
TensorFiller(const std::vector<int64_t>& shape)
: shape_(shape), dist_(FD_UNIFORM), fixed_sum_(0) {}
TensorFiller() : TensorFiller(std::vector<int64_t>()) {}
std::string DebugString() const {
std::stringstream stream;
stream << "shape = [" << shape_ << "]; min = " << min_
<< "; max = " << max_;
switch (dist_) {
case FD_FIXEDSUM:
stream << "; dist = FD_FIXEDSUM";
break;
case FD_SYNTHETIC:
stream << "; dist = FD_SYNTHETIC";
break;
default:
stream << "; dist = FD_UNIFORM";
break;
}
return stream.str();
}
private:
std::vector<int64_t> shape_;
// TODO: type is unknown until a user starts to fill data;
// cast everything to double for now.
double min_ = 0.0;
double max_ = 1.0;
FillerDistribution dist_;
double fixed_sum_;
};
} // namespace caffe2
#endif // CAFFE2_FILLER_H_