mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: See https://github.com/pytorch/pytorch/issues/42919 Pull Request resolved: https://github.com/pytorch/pytorch/pull/53349 Reviewed By: malfet Differential Revision: D27039089 Pulled By: bugra fbshipit-source-id: 8063dc184248604506a8dbb1bcb73da8ec85bb18
82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
from hypothesis import given, settings
|
|
|
|
|
|
class TestComputeEqualizationScaleOp(hu.HypothesisTestCase):
|
|
@settings(max_examples=10)
|
|
@given(
|
|
m=st.integers(1, 50),
|
|
n=st.integers(1, 50),
|
|
k=st.integers(1, 50),
|
|
rnd_seed=st.integers(1, 5),
|
|
**hu.gcs_cpu_only
|
|
)
|
|
def test_compute_equalization_scale(self, m, n, k, rnd_seed, gc, dc):
|
|
np.random.seed(rnd_seed)
|
|
W = np.random.rand(n, k).astype(np.float32) - 0.5
|
|
X = np.random.rand(m, k).astype(np.float32) - 0.5
|
|
|
|
def ref_compute_equalization_scale(X, W):
|
|
S = np.ones([X.shape[1]])
|
|
for j in range(W.shape[1]):
|
|
WcolMax = np.absolute(W[:, j]).max()
|
|
XcolMax = np.absolute(X[:, j]).max()
|
|
if WcolMax and XcolMax:
|
|
S[j] = np.sqrt(WcolMax / XcolMax)
|
|
return S
|
|
|
|
net = core.Net("test")
|
|
|
|
ComputeEqualizationScaleOp = core.CreateOperator(
|
|
"ComputeEqualizationScale", ["X", "W"], ["S"]
|
|
)
|
|
net.Proto().op.extend([ComputeEqualizationScaleOp])
|
|
|
|
self.ws.create_blob("X").feed(X, device_option=gc)
|
|
self.ws.create_blob("W").feed(W, device_option=gc)
|
|
self.ws.run(net)
|
|
|
|
S = self.ws.blobs["S"].fetch()
|
|
S_ref = ref_compute_equalization_scale(X, W)
|
|
np.testing.assert_allclose(S, S_ref, atol=1e-3, rtol=1e-3)
|
|
|
|
def test_compute_equalization_scale_shape_inference(self):
|
|
X = np.array([[1, 2], [2, 4], [6, 7]]).astype(np.float32)
|
|
W = np.array([[2, 3], [5, 4], [8, 2]]).astype(np.float32)
|
|
ComputeEqualizationScaleOp = core.CreateOperator(
|
|
"ComputeEqualizationScale", ["X", "W"], ["S"]
|
|
)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("W", W)
|
|
|
|
net = core.Net("test_shape_inference")
|
|
net.Proto().op.extend([ComputeEqualizationScaleOp])
|
|
shapes, types = workspace.InferShapesAndTypes(
|
|
[net],
|
|
blob_dimensions={"X": X.shape, "W": W.shape},
|
|
blob_types={"X": core.DataType.FLOAT, "W": core.DataType.FLOAT},
|
|
)
|
|
assert (
|
|
"S" in shapes and "S" in types
|
|
), "Failed to infer the shape or type of output"
|
|
self.assertEqual(shapes["S"], [1, 2])
|
|
self.assertEqual(types["S"], core.DataType.FLOAT)
|