mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44540 Support output type to be fp16 for UniformFill Reviewed By: jianyuh Differential Revision: D23558030 fbshipit-source-id: 53a5b2c92cfe78cd11f55e6ee498e1bd682fe4a1
100 lines
2.7 KiB
C++
100 lines
2.7 KiB
C++
#ifndef CAFFE2_OPERATORS_HALF_FLOAT_OPS_H_
|
|
#define CAFFE2_OPERATORS_HALF_FLOAT_OPS_H_
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/operator.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <class Context>
|
|
class FloatToHalfOp : public Operator<Context> {
|
|
public:
|
|
explicit FloatToHalfOp(const OperatorDef& operator_def, Workspace* ws)
|
|
: Operator<Context>(operator_def, ws),
|
|
clip_(this->template GetSingleArgument<bool>("clip", false)) {}
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
bool RunOnDevice() override;
|
|
|
|
private:
|
|
bool clip_;
|
|
};
|
|
|
|
template <class Context>
|
|
class HalfToFloatOp : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
USE_SIMPLE_CTOR_DTOR(HalfToFloatOp);
|
|
|
|
bool RunOnDevice() override;
|
|
};
|
|
|
|
class Float16ConstantFillOp : public Operator<CPUContext> {
|
|
public:
|
|
template <class... Args>
|
|
explicit Float16ConstantFillOp(Args&&... args)
|
|
: Operator<CPUContext>(std::forward<Args>(args)...),
|
|
shape_(this->template GetRepeatedArgument<int64_t>("shape")) {}
|
|
|
|
USE_OPERATOR_FUNCTIONS(CPUContext);
|
|
virtual ~Float16ConstantFillOp() {}
|
|
|
|
bool RunOnDevice() override;
|
|
|
|
private:
|
|
vector<int64_t> shape_;
|
|
};
|
|
|
|
template <class Context>
|
|
class Float16UniformFillOp : public Operator<Context> {
|
|
public:
|
|
template <class... Args>
|
|
explicit Float16UniformFillOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...),
|
|
shape_(this->template GetRepeatedArgument<int64_t>("shape")),
|
|
min_(this->template GetSingleArgument<float>("min", 0)),
|
|
max_(this->template GetSingleArgument<float>("max", 1)) {
|
|
if (InputSize() == 3) {
|
|
CAFFE_ENFORCE(
|
|
!this->template HasSingleArgumentOfType<float>("min"),
|
|
"Cannot set both min arg and min input blob");
|
|
CAFFE_ENFORCE(
|
|
!this->template HasSingleArgumentOfType<float>("max"),
|
|
"Cannot set both max arg and max input blob");
|
|
} else {
|
|
CAFFE_ENFORCE_LT(
|
|
min_, max_, "Max value should be bigger than min value.");
|
|
}
|
|
}
|
|
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
virtual ~Float16UniformFillOp() {}
|
|
|
|
bool RunOnDevice() override;
|
|
|
|
private:
|
|
vector<int64_t> shape_;
|
|
float min_;
|
|
float max_;
|
|
|
|
Tensor temp_data_buffer_;
|
|
};
|
|
|
|
inline std::vector<TensorShape> Float16FillerTensorInference(
|
|
const OperatorDef& def,
|
|
const vector<TensorShape>& in) {
|
|
vector<TensorShape> out(1);
|
|
ArgumentHelper helper(def);
|
|
out[0].set_data_type(static_cast<TensorProto_DataType>(
|
|
helper.GetSingleArgument<int>("dtype", TensorProto_DataType_FLOAT16)));
|
|
auto shape = helper.GetRepeatedArgument<int>("shape");
|
|
for (int d : shape) {
|
|
out[0].add_dims(d);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_OPERATORS_HALF_FLOAT_OPS_H_
|