pytorch/caffe2/operators/conditional_op.cc
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

66 lines
2.1 KiB
C++

#include "caffe2/operators/conditional_op.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
template <>
bool ConditionalOp<CPUContext>::RunOnDevice() {
auto& condition = Input(0);
auto& dataT = Input(1);
auto& dataF = Input(2);
// verify the inputs shape
CAFFE_ENFORCE_EQ(condition.dim(), 1);
CAFFE_ENFORCE(dataT.dim() >= 1);
CAFFE_ENFORCE(dataT.sizes()[0] == condition.sizes()[0]);
CAFFE_ENFORCE_EQ(dataT.dim(), dataF.dim());
for (size_t i = 0; i < dataT.sizes().size(); i++) {
CAFFE_ENFORCE(dataT.sizes().at(i) == dataF.sizes().at(i));
}
const auto innerSize = dataT.size_from_dim(1);
const auto innerSizeBytes = innerSize * dataT.dtype().itemsize();
CAFFE_ENFORCE(innerSize * dataF.dtype().itemsize() == innerSizeBytes);
// initialize output shape
auto* dataOut = Output(0);
const auto* condPtr = condition.template data<bool>();
dataOut->ResizeLike(dataT);
auto* outPtr = (char*)dataOut->raw_mutable_data(dataT.dtype());
// perform conditional op along first dimension
const auto* ptrT = (char*)dataT.raw_data();
const auto* ptrF = (char*)dataF.raw_data();
for (int64_t i = 0; i < condition.numel(); i++) {
auto* dst = outPtr + i * innerSizeBytes;
if (condPtr[i]) {
context_.CopyItemsSameDevice(
dataT.dtype(), innerSize, ptrT + i * innerSizeBytes, dst);
} else {
context_.CopyItemsSameDevice(
dataF.dtype(), innerSize, ptrF + i * innerSizeBytes, dst);
}
}
return true;
}
REGISTER_CPU_OPERATOR(Conditional, ConditionalOp<CPUContext>);
OPERATOR_SCHEMA(Conditional)
.NumInputs(3)
.NumOutputs(1)
.SetDoc(R"DOC(
Given a 1-D tensor of boolean values, apply conditional operator along the first
dimension of DataT and DataF and return DataO. Note, DataT and DataF must
have the exact same shape and type.
)DOC")
.Input(0, "Condition", "Boolean tensor to select DataT or DataF")
.Input(1, "DataT", "Data to use when True")
.Input(2, "DataF", "Data to use when False")
.Output(0, "DataO", "Output data after applying ConditionalOp")
.IdenticalTypeAndShapeOfInput(1);
NO_GRADIENT(Conditional);
} // caffe2