mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: As titled. Test Plan: ``` buck test caffe2/caffe2/python/operator_test:torch_integration_test -- test_batch_bucket_one_hot_op ``` Reviewed By: yf225 Differential Revision: D23005981 fbshipit-source-id: 1daa8d3e7d6ad75e97e94964db95ccfb58541672
101 lines
2.5 KiB
C++
101 lines
2.5 KiB
C++
#ifndef CAFFE_OPERATORS_ONE_HOT_OPS_H_
|
|
#define CAFFE_OPERATORS_ONE_HOT_OPS_H_
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/export_caffe2_op_to_c10.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(BatchBucketOneHot);
|
|
|
|
namespace caffe2 {
|
|
|
|
template <class Context>
|
|
class OneHotOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
template <class... Args>
|
|
explicit OneHotOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
|
|
|
bool RunOnDevice() override {
|
|
auto& indices = Input(0);
|
|
CAFFE_ENFORCE_EQ(
|
|
indices.dim(),
|
|
1,
|
|
"indices input must be 1D tensor of data type int64_t");
|
|
|
|
// Index size input must be in CPU context
|
|
auto& index_size_tensor = this->template Input<Tensor>(1, CPU);
|
|
CAFFE_ENFORCE_EQ(
|
|
index_size_tensor.numel(),
|
|
1,
|
|
"index_size_tensor input must be scalar of data type int64_t");
|
|
|
|
auto batch_size = indices.numel();
|
|
auto index_size = *index_size_tensor.template data<int64_t>();
|
|
auto one_hots = Output(0);
|
|
one_hots->Resize(batch_size, index_size);
|
|
auto output_size = one_hots->numel();
|
|
if (output_size == 0) {
|
|
return true;
|
|
}
|
|
|
|
DoOneHotOp(batch_size, index_size, indices, one_hots);
|
|
return true;
|
|
}
|
|
|
|
protected:
|
|
void DoOneHotOp(
|
|
int64_t batch_size,
|
|
int64_t index_size,
|
|
const Tensor& indices,
|
|
Tensor* output);
|
|
};
|
|
|
|
template <class Context>
|
|
class BatchOneHotOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
template <class... Args>
|
|
explicit BatchOneHotOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
|
|
|
bool RunOnDevice() override {
|
|
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(X));
|
|
}
|
|
|
|
template <typename T>
|
|
bool DoRunWithType();
|
|
|
|
INPUT_TAGS(X, LENS, VALS);
|
|
|
|
protected:
|
|
OUTPUT_TAGS(ONE_HOT);
|
|
|
|
private:
|
|
// allows for fast random access to a given dict and is re-used across runs
|
|
std::vector<int64_t> valsOffsets_;
|
|
};
|
|
|
|
template <class Context>
|
|
class BatchBucketOneHotOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
template <class... Args>
|
|
explicit BatchBucketOneHotOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...) {}
|
|
|
|
bool RunOnDevice() override;
|
|
|
|
protected:
|
|
INPUT_TAGS(X, LENS, BOUNDARIES);
|
|
OUTPUT_TAGS(ONE_HOT);
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE_OPERATORS_ONE_HOT_OPS_H_
|