pytorch/caffe2/operators/conv_op_shared.cc
Nikita Shulga 4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00

37 lines
1.1 KiB
C++

#include "conv_op_shared.h"
#include "caffe2/core/context.h"
#include "caffe2/core/flags.h"
#include "caffe2/core/workspace.h"
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
C10_DEFINE_bool(
caffe2_force_shared_col_buffer,
false,
"Always use the shared col buffer");
namespace caffe2 {
template <>
void createSharedBuffer<CPUContext>(Workspace* ws) {
auto* mutexPtr = ws->CreateBlob("__CAFFE2_SHARED_CONV_BUFFER_CPU_MUTEX__")
->GetMutable<std::unique_ptr<std::mutex>>();
// NOLINTNEXTLINE(modernize-make-unique)
mutexPtr->reset(new std::mutex());
ws->CreateBlob("__CAFFE2_SHARED_CONV_BUFFER_CPU__");
}
template <>
void runWithSharedBuffer<CPUContext>(
Workspace* ws,
std::function<void(Tensor* buffer)> f) {
auto* mutexBlob = ws->GetBlob("__CAFFE2_SHARED_CONV_BUFFER_CPU_MUTEX__");
CAFFE_ENFORCE(mutexBlob, "Must call createSharedBuffer() first");
auto* mutexPtr = mutexBlob->GetMutable<std::unique_ptr<std::mutex>>();
std::lock_guard<std::mutex> g(**mutexPtr);
auto* buffer = BlobGetMutableTensor(
ws->GetBlob("__CAFFE2_SHARED_CONV_BUFFER_CPU__"), CPU);
f(buffer);
}
}