mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
While testing exportability for PT2 Inference models, we found various cases of invalid op inputs during tracing, for example errors like: `a and b must have same reduction dim`, `expected scalar type Long but found Int`, etc. Looking more closely, these happened to due the same few meta kernels & eager kernels producing mismatched outputs upstream (e.g. different output tensor dtype, int output).
Adding checks to catch mismatched outputs in real tensor prop upstream, so errors are raised at the mismatched op, instead of the downstream ops taking them as inputs. Relies a lot on utils from [CrossRefFakeMode](929797dedb/torch/_subclasses/fake_utils.py (L78))
Follow ups: could add more checks, and maybe have a flag to only enable these for cases like draft mode, so perf doesn't suffer?
Test Plan: test_export, test_fake_tensor
Differential Revision: D64210055
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137747
Approved by: https://github.com/zou3519
305 lines
10 KiB
Python
305 lines
10 KiB
Python
# mypy: ignore-errors
|
|
|
|
import functools
|
|
import warnings
|
|
from typing import Any, Callable, List, Union
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
from torch._ops import OpOverload
|
|
from torch._subclasses.fake_tensor import (
|
|
FakeTensor,
|
|
FakeTensorMode,
|
|
MetadataMismatchError,
|
|
tree_flatten_only,
|
|
UnsupportedFakeTensorException,
|
|
)
|
|
from torch.utils._python_dispatch import TorchDispatchMode
|
|
|
|
|
|
aten = torch._ops.ops.aten
|
|
|
|
|
|
def outputs_alias_inputs(outputs, inputs):
|
|
input_storages = {
|
|
inp._typed_storage()._cdata
|
|
for inp in tree_flatten_only(torch.Tensor, inputs)
|
|
if torch._C._has_storage(inp)
|
|
}
|
|
return any(
|
|
torch._C._has_storage(out) and out._typed_storage()._cdata in input_storages
|
|
for out in tree_flatten_only(torch.Tensor, outputs)
|
|
)
|
|
|
|
|
|
def outputs_are_inputs(outputs, inputs):
|
|
input_ids = {id(inp) for inp in tree_flatten_only(torch.Tensor, inputs)}
|
|
return any(id(out) in input_ids for out in tree_flatten_only(torch.Tensor, outputs))
|
|
|
|
|
|
def output_alias_each_other(outputs):
|
|
storages = set()
|
|
for out in tree_flatten_only(torch.Tensor, outputs):
|
|
if not torch._C._has_storage(out):
|
|
continue
|
|
stor = out._typed_storage()._cdata
|
|
if stor in storages:
|
|
return True
|
|
storages.add(stor)
|
|
return False
|
|
|
|
|
|
def _check_alias_info(context, real_out, real_in, fake_out, fake_in):
|
|
r_aliasing = outputs_alias_inputs(real_out, real_in)
|
|
f_aliasing = outputs_alias_inputs(fake_out, fake_in)
|
|
if r_aliasing != f_aliasing:
|
|
raise MetadataMismatchError(
|
|
f"{context} mismatch in outputs_alias_inputs check {f_aliasing} != {r_aliasing}"
|
|
)
|
|
|
|
r_identity_eq = outputs_are_inputs(real_out, real_in)
|
|
f_identity_eq = outputs_are_inputs(fake_out, fake_in)
|
|
if r_identity_eq != f_identity_eq:
|
|
raise MetadataMismatchError(
|
|
f"{context} mismatch in outputs_are_inputs check {f_identity_eq} != {r_identity_eq}"
|
|
)
|
|
|
|
r_output_alias_each_other = output_alias_each_other(real_out)
|
|
f_output_alias_each_other = output_alias_each_other(fake_out)
|
|
if r_output_alias_each_other != f_output_alias_each_other:
|
|
raise MetadataMismatchError(
|
|
f"{context} mismatch in outputs_alias_each_other check "
|
|
f"{f_output_alias_each_other} != {r_output_alias_each_other}"
|
|
)
|
|
|
|
|
|
def is_sdpa_error(func, idx, e):
|
|
if (
|
|
(
|
|
func is aten._scaled_dot_product_flash_attention.default
|
|
or func is aten._flash_attention_forward.default
|
|
)
|
|
and idx in (6, 7)
|
|
and "Devices" in repr(e)
|
|
):
|
|
return True
|
|
if (
|
|
(
|
|
func is aten._scaled_dot_product_efficient_attention.default
|
|
or func is aten._efficient_attention_forward.default
|
|
)
|
|
and idx in (2, 3)
|
|
and "Devices" in repr(e)
|
|
):
|
|
return True
|
|
if (
|
|
func is aten._scaled_dot_product_cudnn_attention.default
|
|
and idx in (6, 7)
|
|
and "Devices" in repr(e)
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
def try_convert_fake_to_real(
|
|
ten_list: List[Union[FakeTensor, Any]]
|
|
) -> List[Union[FakeTensor, torch.Tensor, Any]]:
|
|
"""
|
|
Attempt to convert fake tensors to a corresponding real tensor with the correct underlying storage by looking up
|
|
the FakeTensorMode meta to real storage mapping. On failure to find the storage mapping, the FakeTensor will
|
|
remain in the list.
|
|
|
|
Note: this is not currently optimized (makes copies of the meta converter internal dictionaries)
|
|
"""
|
|
|
|
fake_tensor = next(
|
|
(item for item in ten_list if isinstance(item, FakeTensor)), None
|
|
)
|
|
if fake_tensor is None:
|
|
return ten_list
|
|
|
|
fake_mode = fake_tensor.fake_mode
|
|
meta_converter = fake_mode.fake_tensor_converter.meta_converter
|
|
desc = meta_converter.describer
|
|
|
|
storage_to_key = {v: k for k, v in meta_converter.storage_memo.items()}
|
|
key_to_real_storage = {v: k for k, v in desc.lookup_storage.items()}
|
|
out = []
|
|
for t in ten_list:
|
|
if not isinstance(t, FakeTensor) or not t.layout == torch.strided:
|
|
out.append(t)
|
|
continue
|
|
|
|
key = storage_to_key.get(t.untyped_storage())
|
|
real_storage = None if key is None else key_to_real_storage.get(key)
|
|
if real_storage is None:
|
|
out.append(t)
|
|
continue
|
|
|
|
unhinted = False
|
|
|
|
def map_symint(s):
|
|
nonlocal unhinted
|
|
if not isinstance(s, torch.SymInt):
|
|
return s
|
|
unhinted = unhinted if not unhinted else s.node.has_hint()
|
|
return s.node.hint
|
|
|
|
stor_offset = map_symint(t.storage_offset())
|
|
size = [map_symint(s) for s in t.shape]
|
|
stride = [map_symint(s) for s in t.stride()]
|
|
|
|
if unhinted:
|
|
out.append(t)
|
|
continue
|
|
|
|
new_tensor = torch.empty(
|
|
[],
|
|
dtype=t.dtype,
|
|
device=t.device,
|
|
)
|
|
new_tensor.set_(
|
|
real_storage,
|
|
storage_offset=stor_offset,
|
|
size=size,
|
|
stride=stride,
|
|
)
|
|
out.append(new_tensor.clone())
|
|
|
|
return out
|
|
|
|
|
|
def _check_fake_real_tensors(
|
|
real_out: torch.Tensor,
|
|
fake_out: FakeTensor,
|
|
context="",
|
|
sizes=True,
|
|
strides=False,
|
|
storage_offset=True,
|
|
requires_grad=True,
|
|
):
|
|
if requires_grad:
|
|
if real_out.requires_grad != fake_out.requires_grad:
|
|
raise MetadataMismatchError(
|
|
f"{context} mismatched requires_grad-ness of outputs. "
|
|
f"This usually means that you have added autograd support "
|
|
f"for your operator at a dispatch key other than Autograd, "
|
|
f"which will lead to problems"
|
|
)
|
|
|
|
if torch._C._has_storage(real_out):
|
|
r_offset = real_out.storage_offset()
|
|
f_offset = fake_out.storage_offset()
|
|
if r_offset != f_offset:
|
|
raise MetadataMismatchError(f"{context} mismatched storage offset")
|
|
|
|
torch._prims.utils.compare_tensor_meta(
|
|
real_out,
|
|
fake_out,
|
|
check_sizes=sizes,
|
|
check_strides=strides,
|
|
allow_rhs_unbacked=True,
|
|
)
|
|
|
|
|
|
class CrossRefFakeMode(TorchDispatchMode):
|
|
def __init__(
|
|
self,
|
|
ignore_op_fn: Union[Callable[[OpOverload], bool], None] = None,
|
|
*,
|
|
check_strides=True,
|
|
check_aliasing=True,
|
|
only_check_ops_with_meta=True,
|
|
):
|
|
super().__init__()
|
|
self.ignore_op_fn = (
|
|
ignore_op_fn if ignore_op_fn is not None else lambda fn: False
|
|
)
|
|
self.check_strides = check_strides
|
|
self.check_aliasing = check_aliasing
|
|
self.only_check_ops_with_meta = only_check_ops_with_meta
|
|
|
|
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
|
kwargs = kwargs or {}
|
|
|
|
fake_r = None
|
|
|
|
# empty_like excluded for now due to sparse complex
|
|
# aten._to_dense.default this one is getting called with csc
|
|
if (
|
|
func
|
|
not in (
|
|
aten.lift_fresh.default,
|
|
aten.lift_fresh_copy.default,
|
|
aten.set_.source_Storage_storage_offset,
|
|
)
|
|
and not self.ignore_op_fn(func)
|
|
and (
|
|
not self.only_check_ops_with_meta
|
|
or torch._subclasses.fake_impls.has_meta(func)
|
|
)
|
|
and torch.Tag.dynamic_output_shape not in func.tags
|
|
and torch.Tag.inplace_view not in func.tags
|
|
and torch.Tag.data_dependent_output not in func.tags
|
|
):
|
|
# Do not import symbolic_shapes at the top of the module as it imports sympy and that's slow
|
|
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
|
|
|
try:
|
|
# TODO: enable_python_dispatcher() here
|
|
with FakeTensorMode(shape_env=ShapeEnv()) as fake_mode:
|
|
fake_args, fake_kwargs = pytree.tree_map_only(
|
|
torch.Tensor,
|
|
functools.partial(fake_mode.from_tensor, static_shapes=True),
|
|
(args, kwargs),
|
|
)
|
|
with warnings.catch_warnings():
|
|
fake_r = func(*fake_args, **fake_kwargs)
|
|
except UnsupportedFakeTensorException:
|
|
pass
|
|
|
|
context = (
|
|
f"When comparing the output of {func} on FakeTensor and concrete Tensors, "
|
|
f"found"
|
|
)
|
|
r = func(*args, **kwargs)
|
|
if fake_r is not None:
|
|
r_flat = pytree.tree_leaves(r)
|
|
f_flat = pytree.tree_leaves(fake_r)
|
|
assert len(f_flat) == len(
|
|
r_flat
|
|
), f"{context} mismatch in number of returns {len(f_flat)} != {len(r_flat)}"
|
|
|
|
if self.check_aliasing:
|
|
_check_alias_info(
|
|
context, r, (args, kwargs), fake_r, (fake_args, fake_kwargs)
|
|
)
|
|
|
|
for idx, (r_out, f_out) in enumerate(
|
|
zip(pytree.tree_leaves(r), pytree.tree_leaves(fake_r))
|
|
):
|
|
r_is_ten = isinstance(r_out, torch.Tensor)
|
|
assert r_is_ten == isinstance(
|
|
f_out, torch.Tensor
|
|
), f"{context} mismatched number of tensor outputs"
|
|
if r_is_ten:
|
|
try:
|
|
_check_fake_real_tensors(
|
|
r_out,
|
|
f_out,
|
|
sizes=True,
|
|
strides=self.check_strides,
|
|
storage_offset=True,
|
|
requires_grad=True,
|
|
)
|
|
except Exception as e:
|
|
if is_sdpa_error(func, idx, e):
|
|
continue
|
|
error_message = (
|
|
f"{context} mismatched tensor metadata: {e}"
|
|
if len(r_flat) == 1
|
|
else f"{context} mismatched tensor metadata for output[{idx}]: {e}"
|
|
)
|
|
raise MetadataMismatchError(error_message) from e
|
|
return r
|