pytorch/torch/csrc/jit/python/pybind_utils.h
Luca Wehrstedt a6778989d1 Support wider range of types in FutureNCCL (#48502)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48502

This commit is part of a stack that reworks FutureNCCL in order to extract a generic CUDA-aware Future subclass. The stack deliberately breaks up this transition into elementary changes, to make it easier to verify that the behavior is preserved (or to highlight how it gets changed).

 ---

FutureNCCL restricted the values to be tensors, or (singleton) lists of tensors, or Python object that could be converted to either of those types. We need a CUDA future that can handle more generic types though.

The main challenge is extracting all DataPtrs from an arbitrary object. I think I found some ways of doing so, but I'd like some JIT experts to look into this and tell me if there are better ways. I'll add inline comments for where their input would be appreciated.
ghstack-source-id: 118180026

Test Plan: Unit tests (I should probably add new ones)

Reviewed By: wanchaol

Differential Revision: D25177562

fbshipit-source-id: 1ef18e67bf44543c70abb4ca152f1610dea4e533
2020-12-10 03:54:15 -08:00

1282 lines
43 KiB
C++

#pragma once
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h>
#include <ATen/core/stack.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_ivalue.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/utils/auto_gil.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/six.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/rref_impl.h>
#endif
#include <ATen/core/function_schema.h>
#include <c10/core/Stream.h>
#ifdef USE_C10D_NCCL
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAStream.h>
#endif
#include <c10/util/Exception.h>
#include <algorithm>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
// The visibility attribute is to avoid a warning about storing a field in the
// struct that has a different visibility (from pybind) than the struct.
#ifdef _WIN32
#define VISIBILITY_HIDDEN
#else
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#endif
namespace torch {
namespace jit {
inline IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N = c10::nullopt);
py::object toPyObject(IValue ivalue);
IValue toTypeInferredIValue(py::handle input);
// The PythonFutureWrapper for ivalue::Future
//
// NB: VISIBILITY_HIDDEN is for silencing compiling error,
// "error: 'torch::jit::PythonFutureWrapper' declared with greater visibility
// than the type of its field 'torch::jit::PythonFutureWrapper::unwrap_func'
// [-Werror=attributes]"
//
// NB: inherit from enable_shared_from_this because then(py::function) needs to
// get a shared_ptr from this pointer.
struct VISIBILITY_HIDDEN PythonFutureWrapper
: std::enable_shared_from_this<PythonFutureWrapper> {
using UnwrapFunc = std::function<void(py::object)>;
explicit PythonFutureWrapper(
c10::intrusive_ptr<c10::ivalue::Future> fut,
c10::optional<UnwrapFunc> unwrap_func = c10::nullopt)
: fut(std::move(fut)), unwrap_func(std::move(unwrap_func)) {}
explicit PythonFutureWrapper(const PythonFutureWrapper&) = delete;
PythonFutureWrapper& operator=(const PythonFutureWrapper&) = delete;
bool done() {
return fut->completed();
}
py::object value() {
// acquiring GIL as toPyObject creates new py::object
// without grabbing the GIL.
py::gil_scoped_acquire acquire;
py::object py_obj = toPyObject(fut->value());
if (unwrap_func) {
(*unwrap_func)(py_obj);
}
return py_obj;
}
py::object wait() {
fut->wait();
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut->value(), output);
}
return value();
}
// The py::function cb arg must take a std::shared_ptr<PythonFutureWrapper>
// (i.e., torch._C.Future) as the only argument. If the type mismatches, an
// error will be thrown when waiting for the value of this returned Future.
std::shared_ptr<PythonFutureWrapper> then(py::function cb) {
// We need this an additional layer of wrapper here to guard the
// destruction of the py::function object. Because, the
// Future owns a reference to the py::function in its callback
// vector, but Future does not acquire GIL on destruction.
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
fut->setDataPtrExtractor(&PythonFutureWrapper::dataPtrExtractor);
return std::make_shared<jit::PythonFutureWrapper>(fut->then(
// Capture a copy of the ivalue::Future instead of the `this` pointer
// because the PythonFutureWrapper object could have been deleted
// when the callbacks are fired. For example, RPC only captures the
// ivalue::Future instead of PythonFutureWrapper in FutureMessage's
// callback functions. Hence, if user code does not hold a reference to
// this PythonFutureWrapper object, there is no guarantee that the
// PythonFutureWrapper is still valid when running the callback.
[pyFut(this->getPtr()), pf(std::move(pf))]() -> IValue {
try {
pybind11::gil_scoped_acquire ag;
return toIValue(pf->func_(pyFut), PyObjectType::get());
} catch (py::error_already_set& e) {
auto err = std::runtime_error(c10::str(
"Got the following error when running the callback: ",
e.what()));
{
pybind11::gil_scoped_acquire ag;
// Release ownership on py::objects and also restore Python
// Error Indicator.
e.restore();
// Clear the Python Error Indicator as we has recorded the
// exception in the response message.
PyErr_Clear();
}
throw err;
}
},
PyObjectType::get()));
}
void add_done_callback(py::function cb) {
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
fut->addCallback(std::bind(
[pyFut(this->getPtr())](std::shared_ptr<PythonFunctionGuard> pf) {
try {
pybind11::gil_scoped_acquire ag;
pf->func_(pyFut);
} catch (py::error_already_set& e) {
{
pybind11::gil_scoped_acquire ag;
// Release ownership on py::objects and also restore Python
// Error Indicator.
e.restore();
// Clear the Python Error Indicator as we has recorded the
// exception in the response message.
PyErr_Clear();
}
// Log and ignore exceptions raised through the callback
VLOG(1) << "Got the following error when running the callback: "
<< e.what();
} catch (std::exception& e) {
// Log and ignore exceptions raised through the callback
VLOG(1) << "Got the following error when running the callback: "
<< e.what();
}
},
std::move(pf)));
}
void markCompleted(const py::object& pyValue) {
DCHECK(PyGILState_Check());
IValue value = toIValue(pyValue, PyObjectType::get());
py::gil_scoped_release release;
fut->markCompleted(std::move(value));
}
c10::intrusive_ptr<c10::ivalue::Future> fut;
// unwrap_func works like a callback for the value returned by
// PythonFutureWrapper::wait().
c10::optional<UnwrapFunc> unwrap_func;
private:
// Wrap Python function to guard deref
struct PythonFunctionGuard {
explicit PythonFunctionGuard(py::function func) : func_(std::move(func)) {}
~PythonFunctionGuard() {
pybind11::gil_scoped_acquire ag;
func_.dec_ref();
// explicitly setting PyObject* to nullptr to prevent py::object's dtor to
// decref on the PyObject again.
// See Note [Destructing py::object] in python_ivalue.h
func_.ptr() = nullptr;
}
py::function func_;
};
std::shared_ptr<PythonFutureWrapper> getPtr() {
return shared_from_this();
}
// This callback is only used by subclasses of Future that deal with CUDA,
// in order to register the pointers on the right streams with the caching
// allocator.
static std::vector<std::reference_wrapper<const at::DataPtr>> dataPtrExtractor(
const at::IValue& value) {
if (value.isPyObject()) {
pybind11::gil_scoped_acquire gil;
py::object obj = torch::jit::toPyObject(value);
// FIXME This could fail. As a fallback we could try to pickle the
// object, since the pickler might support broader types and it is able
// to extract the tensors from the object as a vector.
auto new_value = torch::jit::toTypeInferredIValue(obj);
return at::ivalue::Future::defaultDataPtrExtractor(new_value);
}
return at::ivalue::Future::defaultDataPtrExtractor(value);
};
};
// error reporting: when reporting user-caused errors, these functions should
// not use AT_ERROR macros, since these macros add stack trace information
// that is confusing to display to the end user since it always reports
// locations in libtorch code rather than user code.
inline std::shared_ptr<CompilationUnit> get_python_cu() {
return py::module::import("torch.jit._state")
.attr("_python_cu")
.cast<std::shared_ptr<CompilationUnit>>();
}
struct TypedIValue : public std::pair<IValue, TypePtr> {
using pair::pair;
IValue& ivalue() {
return this->first;
}
TypePtr& type() {
return this->second;
}
};
inline TypedIValue toDictKeyIValue(py::handle key) {
if (py::isinstance<py::str>(key)) {
return TypedIValue(
ConstantString::create(py::cast<std::string>(key)),
StringType::create());
} else if (py::isinstance<py::int_>(key)) {
return TypedIValue(py::cast<int64_t>(key), IntType::create());
} else if (py::isinstance<py::float_>(key)) {
return TypedIValue(py::cast<double>(key), FloatType::create());
} else {
AT_ERROR("Dictionary inputs may only have string, int, or float keys");
}
}
inline c10::optional<TypePtr> unifyOrInitializeType(
const TypePtr& accum,
const TypePtr& unify) {
if (!accum) {
return unify;
}
return unifyTypes(accum, unify);
}
struct InferredType {
InferredType(TypePtr type) : type_(std::move(type)) {}
InferredType(std::string reason)
: type_(nullptr), reason_(std::move(reason)) {}
TypePtr type() const {
TORCH_INTERNAL_ASSERT(type_);
return type_;
}
bool success() const {
return type_ != nullptr;
}
const std::string& reason() const {
TORCH_INTERNAL_ASSERT(!type_);
return reason_;
}
private:
TypePtr type_;
std::string reason_;
};
InferredType tryToInferContainerType(py::handle input);
// Try to infer the type of a Python object
// The type cannot be inferred if:
// input is a None
// input is an empty container (list, dict)
// input is an list with element types that cannot be unified
// input is an dict with key or value types that cannot be unified
inline InferredType tryToInferType(py::handle input) {
// Try tensor types
if (THPVariable_Check(input.ptr())) {
return InferredType(TensorType::get());
}
if (input.is(py::none())) {
return InferredType(NoneType::get());
}
if (py::isinstance<StrongFunctionPtr>(input)) {
auto fn = py::cast<StrongFunctionPtr>(input).function_;
return InferredType(FunctionType::create(fn));
}
// Try basic types first
if (py::isinstance<py::bool_>(input)) {
return InferredType(BoolType::get());
} else if (py::isinstance<py::int_>(input)) {
return InferredType(IntType::get());
} else if (py::isinstance<py::float_>(input)) {
return InferredType(FloatType::get());
} else if (py::isinstance<py::str>(input)) {
return InferredType(StringType::get());
} else if (THPLayout_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPDevice_Check(input.ptr())) {
return InferredType(DeviceObjType::get());
} else if (THPStream_Check(input.ptr())) {
return InferredType(StreamObjType::get());
} else if (THPDtype_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPQScheme_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPLayout_Check(input.ptr())) {
return InferredType(IntType::get());
}
auto enum_type = py::module::import("enum").attr("Enum");
py::bool_ isEnumValue = py::isinstance(input, enum_type);
if (py::cast<bool>(isEnumValue)) {
auto enum_class = input.attr("__class__");
auto enum_type = py::cast<TypePtr>(
py::module::import("torch.jit.annotations")
.attr("try_ann_to_type")(enum_class, SourceRange()));
return InferredType(enum_type);
}
py::bool_ isClass =
py::module::import("inspect").attr("isclass")(input.get_type());
if (py::cast<bool>(isClass)) {
py::str qualifiedName = py::module::import("torch._jit_internal")
.attr("_qualified_name")(input.get_type());
auto pyClass = py::module::import("torch.jit._state")
.attr("_get_script_class")(qualifiedName);
if (!pyClass.is_none()) {
auto cu = get_python_cu();
const auto classname =
c10::QualifiedName(py::cast<std::string>(qualifiedName));
auto class_type = cu->get_class(classname);
TORCH_INTERNAL_ASSERT(class_type);
return InferredType(class_type);
}
}
if (py::isinstance<Object>(input)) {
auto object = py::cast<Object>(input);
return InferredType(object.type());
#ifdef USE_RPC
} else if (py::isinstance<torch::distributed::rpc::PyRRef>(input)) {
auto rref_ivalue = input.cast<torch::distributed::rpc::PyRRef>().toIValue();
return InferredType(rref_ivalue.type());
#endif
}
// Try container types
return tryToInferContainerType(input);
}
inline InferredType tryToInferContainerType(py::handle input) {
if (six::isTuple(input)) {
py::tuple tuple = py::cast<py::tuple>(input);
std::vector<TypePtr> element_types;
element_types.reserve(tuple.size());
for (py::handle elem : tuple) {
auto type_match = tryToInferType(elem);
if (type_match.success()) {
element_types.push_back(type_match.type());
} else {
// Forward error message along
return type_match.reason();
}
}
return InferredType(TupleType::create(element_types));
} else if (PyDict_Check(input.ptr())) {
// Check to make sure we can generate useful input/output types
auto dict = py::cast<py::dict>(input);
size_t len = py::len(dict);
if (!len) {
return InferredType("Dictionary inputs must have entries");
}
TypePtr key_type = nullptr;
TypePtr value_type = nullptr;
for (auto entry : dict) {
// Try to infer the key type and unify it with the existing one
auto entry_key_type_match = tryToInferType(entry.first);
if (!entry_key_type_match.success()) {
return entry_key_type_match.reason();
}
auto unified_key =
unifyOrInitializeType(key_type, entry_key_type_match.type());
if (!unified_key) {
return InferredType(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
key_type->repr_str(),
" and ",
(entry_key_type_match.type())->repr_str()));
}
// Try to infer the value type and unify it with the existing one
auto entry_value_type_match = tryToInferType(entry.second);
if (!entry_value_type_match.success()) {
return entry_value_type_match.reason();
}
auto unified_value =
unifyOrInitializeType(value_type, entry_value_type_match.type());
if (!unified_value) {
return InferredType(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
value_type->repr_str(),
" and ",
(entry_value_type_match.type())->repr_str()));
}
key_type = *unified_key;
value_type = *unified_value;
}
return InferredType(DictType::create(key_type, value_type));
} else if (PyList_Check(input.ptr())) {
auto list = py::cast<py::list>(input);
size_t len = py::len(list);
if (!len) {
return InferredType("List trace inputs must have elements");
}
TypePtr element_type = nullptr;
for (auto elem : list) {
auto element_type_match = tryToInferType(elem);
if (!element_type_match.success()) {
return InferredType(c10::str(
"Could not infer type of list element: ",
element_type_match.reason()));
}
auto unified_type =
unifyOrInitializeType(element_type, element_type_match.type());
if (!unified_type) {
return InferredType(c10::str(
"List inputs to traced functions must have consistent element type. Found ",
element_type->repr_str(),
" and ",
(element_type_match.type())->repr_str()));
}
element_type = *unified_type;
}
return InferredType(ListType::create(element_type));
} else {
// TODO: this message is not correct anymore, since this InferredType is
// used from a bunch of circumstances unrelated to tracing. We can re-use
// this instead of the attribute_failure stuff in concreteType
return InferredType(c10::str(
"Only tensors and (possibly nested) tuples of tensors, lists, or dicts",
"are supported ",
"as inputs or outputs of traced functions",
", but instead got value of type ",
py::str(input.get_type().attr("__name__")),
"."));
}
}
inline bool isTraceableType(const TypePtr& type) {
if (type->isSubtypeOf(TensorType::get())) {
return true;
}
if (auto list_type = type->cast<ListType>()) {
return isTraceableType(list_type->getElementType());
}
if (auto tuple_type = type->cast<TupleType>()) {
return std::all_of(
tuple_type->elements().begin(),
tuple_type->elements().end(),
[](const TypePtr& element_type) {
return isTraceableType(element_type);
});
}
if (auto dict_type = type->cast<DictType>()) {
return isTraceableType(dict_type->getValueType());
}
return false;
}
inline IValue toTypeInferredIValue(py::handle input) {
auto match = tryToInferType(input);
if (!match.success()) {
AT_ERROR(
"Tracer cannot infer type of ", py::str(input), "\n:", match.reason());
}
return toIValue(input, match.type());
}
inline Stack toTraceableStack(const py::tuple& inputs) {
auto info = toTypeInferredIValue(inputs);
TORCH_CHECK(
isTraceableType(info.type()),
"Type '",
info.type()->repr_str(),
"' cannot be traced. Only Tensors and (possibly nested) Lists, Dicts, and"
" Tuples of Tensors can be traced");
return info.toTuple()->elements();
}
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
auto elems = c10::impl::GenericList(elem_type);
for (auto elem : obj) {
elems.push_back(toIValue(elem, elem_type));
}
return IValue(std::move(elems));
}
inline IValue createGenericDict(
const py::dict& obj,
const TypePtr& key_type,
const TypePtr& value_type) {
c10::impl::GenericDict elems(key_type, value_type);
elems.reserve(py::len(obj));
for (auto entry : obj) {
elems.insert(
toIValue(entry.first, key_type), toIValue(entry.second, value_type));
}
return IValue(std::move(elems));
}
template <class T>
inline void guardAgainstNamedTensor(const T& var) {
TORCH_CHECK(
!var.has_names(),
"NYI: Named tensors are currently unsupported in TorchScript. As a "
"workaround please drop names via `tensor = tensor.rename(None)`.");
}
inline IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N) {
switch (type->kind()) {
case TypeKind::TensorType: {
auto var = py::cast<autograd::Variable>(obj);
if (var.is_sparse()) {
TORCH_WARN_ONCE(
"Using sparse tensors in TorchScript is experimental. Many optimization "
"pathways have not been thoroughly tested with sparse tensors. Please "
"include the fact that the network is running sparse tensors in any bug "
"reports submitted.");
}
guardAgainstNamedTensor<autograd::Variable>(var);
return var;
}
case TypeKind::FloatType:
return py::cast<double>(obj);
case TypeKind::IntType:
// TODO(xintchen): Handling LayoutType and ScalarTypeType correctly.
case TypeKind::LayoutType:
case TypeKind::ScalarTypeType:
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
return py::cast<int64_t>(obj);
case TypeKind::NoneType:
if (!obj.is_none()) {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to None"));
}
return {};
case TypeKind::BoolType:
return py::cast<bool>(obj);
case TypeKind::TupleType: {
py::tuple tuple = py::cast<py::tuple>(obj);
size_t tuple_size = tuple.size();
auto tuple_type = type->cast<TupleType>();
const auto& elem_types = tuple_type->elements();
if (elem_types.size() != tuple_size) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" had a different number of elements than type ",
type->repr_str()));
}
std::vector<IValue> values;
values.reserve(tuple_size);
for (size_t i = 0; i < tuple_size; ++i) {
values.push_back(toIValue(tuple[i], elem_types[i]));
}
return tuple_type->name()
? c10::ivalue::Tuple::createNamed(std::move(values), tuple_type)
: c10::ivalue::Tuple::create(std::move(values));
}
case TypeKind::StringType:
return ConstantString::create(py::cast<std::string>(obj));
case TypeKind::DeviceObjType: {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return device->device;
}
case TypeKind::StreamObjType: {
auto stream = reinterpret_cast<THPStream*>(obj.ptr());
return static_cast<int64_t>(stream->cdata);
}
case TypeKind::ListType: {
const auto& elem_type = type->expect<ListType>()->getElementType();
switch (elem_type->kind()) {
// allows single int/float to be broadcasted to a fixed size list
case TypeKind::IntType:
if (!N || !py::isinstance<py::int_>(obj)) {
return IValue(py::cast<std::vector<int64_t>>(obj));
} else {
int64_t value = py::cast<int64_t>(obj);
c10::List<int64_t> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::FloatType:
if (!N || !py::isinstance<py::float_>(obj)) {
return IValue(py::cast<std::vector<double>>(obj));
} else {
double value = py::cast<double>(obj);
c10::List<double> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::BoolType:
return IValue(py::cast<std::vector<bool>>(obj));
case TypeKind::TensorType:
return IValue(py::cast<std::vector<at::Tensor>>(obj));
default:
return createGenericList(obj, elem_type);
}
}
case TypeKind::DictType: {
const auto& dict_type = type->expect<DictType>();
return createGenericDict(
py::cast<py::dict>(obj),
dict_type->getKeyType(),
dict_type->getValueType());
}
case TypeKind::OptionalType: {
// check if it's a none obj since optional accepts NoneType
if (obj.is_none()) {
// check if it's a none obj since optional accepts NoneType
// return an IValue() to denote a NoneType
return {};
}
return toIValue(obj, type->expect<OptionalType>()->getElementType());
}
case TypeKind::ClassType: {
auto classType = type->expect<ClassType>();
if (auto mod = as_module(py::cast<py::object>(obj))) {
// if obj is already a ScriptModule, just return its ivalue
return mod.value()._ivalue();
}
// otherwise is a normal class object, we create a fresh
// ivalue::Object to use from the py object.
// 1. create a bare ivalue
const size_t numAttrs = classType->numAttributes();
auto cu = classType->compilation_unit();
auto userObj = c10::ivalue::Object::create(
c10::StrongTypePtr(cu, classType), numAttrs);
// 2. copy all the contained types
for (size_t slot = 0; slot < numAttrs; slot++) {
const auto& attrType = classType->getAttribute(slot);
const auto& attrName = classType->getAttributeName(slot);
const auto& contained = py::getattr(obj, attrName.c_str());
userObj->setSlot(slot, toIValue(contained, attrType));
}
return userObj;
}
case TypeKind::InterfaceType: {
auto interfaceType = type->expect<InterfaceType>();
// When converting an pyobj to an interface, we check if rhs
// is module or normal torchscript class, get the type and ivalue
// from them correspondingly.
c10::ClassTypePtr classType = nullptr;
IValue res;
if (auto mod = as_module(py::cast<py::object>(obj))) {
classType = mod.value().type();
res = mod.value()._ivalue();
} else {
// We inspect the value to found the compiled TorchScript class
// and then create a ivalue::Object from that class type.
py::str qualified_name = py::module::import("torch._jit_internal")
.attr("_qualified_name")(obj.get_type());
auto pyCu = get_python_cu();
classType = pyCu->get_class(c10::QualifiedName(qualified_name));
if (!classType) {
throw std::runtime_error(c10::str(
"Assigning the object ",
py::str(obj),
" to an interface fails because the value is not "
"a TorchScript compatible type, did you forget to",
"turn it into a user defined TorchScript class?"));
}
res = toIValue(obj, classType);
}
// check if the classType conform with the interface or not
std::stringstream why_not;
if (!classType->isSubtypeOfExt(interfaceType, &why_not)) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" is not compatible with interface ",
interfaceType->repr_str(),
"\n",
why_not.str()));
}
return res;
}
case TypeKind::NumberType: {
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
if (py::isinstance<py::int_>(obj)) {
return py::cast<int64_t>(obj);
} else if (py::isinstance<py::float_>(obj)) {
return py::cast<double>(obj);
} else {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to ", type->repr_str()));
}
}
case TypeKind::RRefType: {
#ifdef USE_RPC
return obj.cast<torch::distributed::rpc::PyRRef>().toIValue();
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} break;
case TypeKind::PyObjectType: {
return c10::ivalue::ConcretePyObjectHolder::create(obj);
}
case TypeKind::CapsuleType: {
return IValue::make_capsule(py::cast<c10::Capsule>(obj).obj_ptr);
}
case TypeKind::FutureType: {
return obj.cast<std::shared_ptr<PythonFutureWrapper>>()->fut;
}
case TypeKind::AnyType:
return toTypeInferredIValue(obj);
case TypeKind::FunctionType:
case TypeKind::GeneratorType:
case TypeKind::QuantizerType:
case TypeKind::VarType:
case TypeKind::QSchemeType:
case TypeKind::AnyListType:
case TypeKind::AnyTupleType:
case TypeKind::AnyClassType:
case TypeKind::AnyEnumType:
break;
case TypeKind::EnumType:
EnumTypePtr enum_type = type->expect<EnumType>();
py::object py_obj = py::reinterpret_borrow<py::object>(obj);
std::string name = py::cast<std::string>(obj.attr("name"));
IValue value = toIValue(obj.attr("value"), enum_type->getValueType(), {});
auto enum_holder =
c10::make_intrusive<c10::ivalue::EnumHolder>(enum_type, name, value);
return IValue(enum_holder);
}
throw py::cast_error(c10::str(
"toIValue() cannot handle converting to type: ", type->repr_str()));
}
// Small wrapper around getting the type name string from Python to make
// types easier to interpret, e.g. give the structural type for a NamedTuple
inline std::string friendlyTypeName(py::handle obj) {
if (py::isinstance<py::tuple>(obj) && py::hasattr(obj, "_fields")) {
auto field_names =
py::cast<std::vector<std::string>>(py::getattr(obj, "_fields"));
std::stringstream ss;
ss << py::str(obj.get_type().attr("__name__"));
ss << " (aka NamedTuple(";
bool first = true;
for (auto& field_name : field_names) {
if (!first) {
ss << ", ";
}
ss << field_name;
first = false;
}
ss << "))";
return ss.str();
} else {
return py::str(obj.get_type().attr("__name__"));
}
}
// Thrown when trying to create a schema for a list of python
// arguments that cannot be converted.
// Can be caught by the caller to attempt to use other schema
// when there is an overloaded operator.
struct schema_match_error : public std::runtime_error {
using std::runtime_error::runtime_error;
};
inline IValue argumentToIValue(
const FunctionSchema& schema,
size_t argumentPosition,
py::handle object) {
const auto& argument = schema.arguments().at(argumentPosition);
try {
return toIValue(object, argument.type(), argument.N());
} catch (const py::cast_error& error) {
throw schema_match_error(c10::str(
schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object)),
"\nCast error details: ",
error.what()));
}
}
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
try {
return toIValue(object, type);
} catch (const py::cast_error& error) {
throw std::runtime_error(c10::str(
" expected value of type ",
type->str(),
" for return value but instead got value of type ",
py::str(object.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(object),
"\nCast error details: ",
error.what()));
}
}
inline py::object getScriptedClassOrError(const std::string& name) {
auto py_class = py::module::import("torch.jit._state")
.attr("_get_script_class")(name.c_str());
if (py_class.is_none()) {
std::stringstream err;
err << "Unknown reference to ScriptClass ";
err << name;
err << ". (Did you forget to import it?)";
throw std::runtime_error(err.str());
}
return py_class;
}
inline py::object toPyObject(IValue ivalue) {
if (ivalue.isNone()) {
return py::none();
} else if (ivalue.isTensor()) {
auto tensor = std::move(ivalue).toTensor();
if (tensor.is_sparse()) {
TORCH_WARN_ONCE(
"Using sparse tensors in TorchScript is experimental. Many optimization "
"pathways have not been thoroughly tested with sparse tensors. Please "
"include the fact that the network is running sparse tensors in any bug "
"reports submitted.");
}
guardAgainstNamedTensor<at::Tensor>(tensor);
return py::cast(autograd::Variable(std::move(tensor)));
} else if (ivalue.isDouble()) {
return py::cast(std::move(ivalue).toDouble());
} else if (ivalue.isInt()) {
return py::cast(std::move(ivalue).toInt());
} else if (ivalue.isBool()) {
return py::cast(std::move(ivalue).toBool());
} else if (ivalue.isString()) {
return py::cast(std::move(ivalue).toStringRef());
} else if (ivalue.isList()) {
auto list = std::move(ivalue).toList();
py::list t{list.size()};
for (size_t i = 0; i < list.size(); ++i) {
t[i] = toPyObject(IValue{list.get(i)});
}
return std::move(t);
} else if (ivalue.isTuple()) {
auto tuple = std::move(ivalue).toTuple();
const auto& elements = tuple->elements();
py::tuple t{elements.size()};
for (size_t i = 0; i < elements.size(); ++i) {
t[i] = toPyObject(IValue{elements.at(i)});
}
if (tuple->type() && tuple->type()->schema() &&
tuple->type()->schema()->name() != "") {
auto unqualName = tuple->type()->name()->name();
auto fieldNames = fmap(
tuple->type()->schema()->arguments(),
[](const Argument& arg) { return arg.name(); });
return py::module::import("torch._jit_internal")
.attr("_create_named_tuple")(t, unqualName, fieldNames);
} else {
return std::move(t);
}
} else if (ivalue.isDevice()) {
return py::cast<py::object>(THPDevice_New(std::move(ivalue).toDevice()));
} else if (ivalue.isGenericDict()) {
auto dict = std::move(ivalue).toGenericDict();
py::dict py_dict;
for (auto& pair : dict) {
py_dict[toPyObject(IValue{pair.key()})] =
toPyObject(IValue{pair.value()});
}
return std::move(py_dict);
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
auto RRefPtr =
c10::dynamic_intrusive_pointer_cast<torch::distributed::rpc::RRef>(
std::move(ivalue).toRRef());
return py::cast(torch::distributed::rpc::PyRRef(RRefPtr));
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} else if (ivalue.isObject()) {
const auto obj = std::move(ivalue).toObject();
if (obj->type()->is_module()) {
return py::cast(Module(obj));
}
auto pyCu = get_python_cu();
if (obj->name().find("__torch__.torch.classes") == 0) {
return py::cast(Object(obj));
}
const auto classType = pyCu->get_class(c10::QualifiedName(obj->name()));
AT_ASSERT(classType);
auto pyClass = getScriptedClassOrError(obj->name());
auto pyObj = pyClass.attr("__new__")(pyClass);
const auto numAttrs = classType->numAttributes();
for (size_t slot = 0; slot < numAttrs; slot++) {
const auto& attrName = classType->getAttributeName(slot);
IValue v = obj->getSlot(slot);
py::setattr(pyObj, attrName.c_str(), toPyObject(std::move(v)));
}
return pyObj;
} else if (ivalue.isPyObject()) {
// return borrowed reference to ensure it correctly incref the underlying
// PyObject
return py::reinterpret_borrow<py::object>(ivalue.toPyObject());
} else if (ivalue.isCapsule()) {
return py::cast(c10::Capsule(ivalue.toCapsule()));
} else if (ivalue.isFuture()) {
return py::cast(std::make_shared<PythonFutureWrapper>(ivalue.toFuture()));
} else if (ivalue.isEnum()) {
auto enum_holder = ivalue.toEnumHolder();
auto qualified_class_name = enum_holder->qualifiedClassName();
auto py_class = getScriptedClassOrError(qualified_class_name);
return py_class.attr(enum_holder->name().c_str());
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
return py::cast(torch::distributed::rpc::PyRRef(
c10::static_intrusive_pointer_cast<distributed::rpc::RRef>(
ivalue.toRRef())));
#else
TORCH_CHECK(false, "RRef is only supported with the distributed package");
#endif
} else {
AT_ERROR(
"Missing cases in 'toPyObject'! Can't convert ",
ivalue.tagKind(),
" to a Python object");
}
}
struct VISIBILITY_HIDDEN tuple_slice {
/*implicit*/ tuple_slice(py::tuple tup_)
: tup(std::move(tup_)), b(0), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_)
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
: tup(std::move(tup_)), b(b_), e(e_) {}
py::detail::tuple_iterator begin() const {
return {tup, static_cast<pybind11::ssize_t>(b)};
}
py::detail::tuple_iterator end() const {
return {tup, static_cast<pybind11::ssize_t>(e)};
}
size_t size() const {
return e - b;
}
py::detail::tuple_accessor operator[](size_t index) const {
return {tup, static_cast<size_t>(b + index)};
}
private:
py::tuple tup;
int64_t b;
int64_t e;
};
inline Stack createStackForSchema(
const FunctionSchema& schema,
const tuple_slice& args,
const py::kwargs& kwargs,
c10::optional<IValue> self) {
size_t all_arguments = (self ? 1 : 0) + args.size() + kwargs.size();
if (all_arguments > schema.arguments().size()) {
throw schema_match_error(c10::str(
schema.name(),
"() expected at most ",
schema.arguments().size(),
" argument(s) but received ",
all_arguments,
" argument(s). Declaration: ",
schema));
}
Stack stack;
stack.reserve(schema.arguments().size());
if (self) {
push(stack, std::move(*self));
}
// First push all positional args.
for (const auto& arg : args) {
// Use the type information from the schema to convert the PyObject.
push(stack, argumentToIValue(schema, stack.size(), arg));
}
// Now for every remaining non-positional argument in the schema, look for it
// in the kwargs dict and push it if found, or use its default value if it
// has one.
size_t consumed_kwargs = 0;
for (size_t i = stack.size(); i < schema.arguments().size(); ++i) {
const auto& arg = schema.arguments()[i];
if (kwargs.contains(arg.name().c_str())) {
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
consumed_kwargs += 1;
} else if (arg.default_value()) {
push(stack, *arg.default_value());
} else {
throw schema_match_error(c10::str(
schema.name(),
"() is missing value for argument '",
arg.name(),
"'. Declaration: ",
schema));
}
}
if (consumed_kwargs != kwargs.size()) {
std::vector<std::string> names;
for (const auto& kwarg : kwargs) {
names.emplace_back(py::cast<std::string>(kwarg.first));
}
throw schema_match_error(schema.findErrorInKwargs(names));
}
return stack;
}
inline py::object createPyObjectForStack(Stack&& stack) {
if (stack.empty()) {
return py::none();
}
// Return a simple value and not a single-element tuple if there is only one
// return value.
if (stack.size() == 1) {
return toPyObject(std::move(stack[0]));
}
// If there is more than one return value, pop them into a py::tuple.
py::tuple return_values(stack.size());
for (size_t ret = 0; ret < return_values.size(); ++ret) {
return_values[ret] = toPyObject(std::move(stack[ret]));
}
return std::move(return_values);
}
// TODO: Remove once we clean up the GraphExecutor usage.
inline Stack evilDeprecatedBadCreateStackDoNotUse(
const py::tuple& tuple,
at::ArrayRef<Value*> inputs,
size_t reserve_extra_space = 0) {
if (tuple.size() != inputs.size()) {
AT_ERROR(
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
std::to_string(tuple.size()));
}
Stack result;
result.reserve(tuple.size() + reserve_extra_space);
for (size_t i = 0; i < inputs.size(); ++i) {
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
}
return result;
}
// Run `callee`, potentially inserting a CallFunction/CallMethod node into the
// tracing graph.
inline py::object runAndInsertCall(
Function& callee,
const tuple_slice& args,
const py::kwargs& kwargs,
c10::optional<IValue> self,
// Lambda that tells this function how to insert `callee` into the graph if
// we're tracing.
const std::function<Value*(Graph&, const MatchedSchema& match)>&
callInserter) {
auto stack =
createStackForSchema(callee.getSchema(), args, kwargs, std::move(self));
const auto& tracing_state = tracer::getTracingState();
if (!tracing_state) {
pybind11::gil_scoped_release no_gil_guard;
// If we're not tracing, just run the callee as normal.
callee.run(stack);
} else {
// If we are tracing, insert the appropriate CallFunction or CallMethod node
// and then run the callee with tracing disabled.
// Get the graph `Value`s that represent the input IValues
auto inputs = last(stack, callee.graph()->inputs().size());
auto input_values =
fmap(inputs, [](const IValue& v) { return tracer::getValueTrace(v); });
TORCH_INTERNAL_ASSERT(callee.getSchema().returns().size() == 1)
auto return_type = callee.getSchema().returns().at(0).type();
auto graph = tracing_state->graph;
std::vector<NamedValue> named_values;
for (Value* v : input_values) {
named_values.emplace_back(v);
}
// Add a call node.
MatchedSchema match = matchSchema(
callee.getSchema(),
tracer::getPythonInterpreterSourceRange(),
*graph,
named_values,
{});
auto output_value = callInserter(*graph, match);
// Actually run the callee. Pause the tracer so that we don't double-add the
// callee nodes.
{
pybind11::gil_scoped_release no_gil_guard;
ResourceGuard guard(tracer::pauseTracing());
callee.run(stack);
}
// Associate the output IValues with the output `Value`s in the graph
tracer::setValueTrace(stack.back(), output_value);
}
TORCH_CHECK(
stack.size() > 0,
"Expected values in the stack after execution but found none");
return toPyObject(std::move(stack.back()));
}
inline py::object invokeScriptFunctionFromPython(
Function& callee,
const tuple_slice& args,
const py::kwargs& kwargs) {
return runAndInsertCall(
callee,
args,
kwargs,
/*self=*/c10::nullopt,
[&](Graph& graph, const MatchedSchema& match) {
return graph.insertFunctionCall(&callee, match);
});
}
inline py::object invokeScriptMethodFromPython(
Method& callee,
const tuple_slice& args,
const py::kwargs& kwargs) {
auto self = callee.owner()._ivalue();
return runAndInsertCall(
callee.function(),
args,
kwargs,
self,
[&](Graph& graph, const MatchedSchema& match) {
return graph.insertMethodCall(callee.name(), match);
});
}
inline py::object invokeOperatorFromPython(
const std::vector<std::shared_ptr<Operator>>& operations,
py::args args,
const py::kwargs& kwargs) {
Stack stack;
if (operations.size() == 1) {
const Operator& op = *operations.at(0);
// Create a stack full of the arguments and keyword arguments.
stack = createStackForSchema(
op.schema(), std::move(args), kwargs, c10::nullopt);
pybind11::gil_scoped_release no_gil_guard;
op.getOperation()(&stack);
} else {
std::vector<schema_match_error> errors;
std::shared_ptr<Operator> found_op = nullptr;
for (const auto& op : operations) {
try {
stack = createStackForSchema(op->schema(), args, kwargs, c10::nullopt);
found_op = op;
break;
} catch (schema_match_error& error) {
errors.push_back(std::move(error));
}
}
if (!found_op) {
std::stringstream ss;
ss << "Overloaded torch operator invoked from Python failed to many any schema:\n";
for (const auto& err : errors) {
ss << err.what() << "\n\n";
}
throw std::runtime_error(ss.str());
}
pybind11::gil_scoped_release no_gil_guard;
found_op->getOperation()(&stack);
}
return createPyObjectForStack(std::move(stack));
}
} // namespace jit
} // namespace torch