mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
# Change This PR adds two classes to DTensor: 1. `CudaRNGStateTracker`: `CudaRNGStateTracker` stores Random Number Generator (RNG) state (a `ByteTensor` object) in a `dict`, mapping from a corresponding tag to each state tensor. It also provides a set of convenient utility methods to help access/modify the state tensors. The most important interface is `_distribute_region` which will be used when DTensor executes a random op (an operator that calls RNG). 2. `OffsetBasedRNGTracker`: This subclass of `CudaRNGStateTracker` defines the default policy of how RNG states should be shared and synchronized among all ranks to respect the semantics of DTensor random operators. # Warning - With `Multi-threaded ProcessGroup`, the global variable `_rng_tracker` will be shared among threads(ranks) and cause issue. We need to figure out a compatible solution for that. - The RNG state may be asynchronous outside of participating ranks. It is harmless in our current use case of submesh though. Pull Request resolved: https://github.com/pytorch/pytorch/pull/103235 Approved by: https://github.com/wanchaol
288 lines
11 KiB
Python
288 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
import functools
|
|
import operator
|
|
from typing import Callable, cast, Dict, List, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
import torch.distributed._tensor.api as dtensor
|
|
import torch.distributed._tensor.random as random
|
|
from torch.distributed._tensor.device_mesh import DeviceMesh
|
|
from torch.distributed._tensor.op_schema import (
|
|
ArgsType,
|
|
KwargsType,
|
|
OpSchema,
|
|
OutputSharding,
|
|
OutputSpecType,
|
|
)
|
|
from torch.distributed._tensor.placement_types import DTensorSpec
|
|
from torch.distributed._tensor.random import is_rng_supported_mesh
|
|
from torch.distributed._tensor.redistribute import redistribute_dtensor
|
|
from torch.distributed._tensor.sharding_prop import ShardingPropagator
|
|
from torch.utils._pytree import tree_flatten, tree_unflatten
|
|
|
|
|
|
def _is_random_op(op):
|
|
aten = torch.ops.aten
|
|
random_ops = [
|
|
aten.native_dropout.default,
|
|
aten.normal_.default,
|
|
aten.uniform_.default,
|
|
]
|
|
return op in random_ops
|
|
|
|
|
|
def wrap(res: object, spec: OutputSpecType) -> object:
|
|
def to_dt(res, spec):
|
|
assert spec is not None and isinstance(
|
|
spec, DTensorSpec
|
|
), f"output spec does not match with output! Expected DTensorSpec, got {spec}."
|
|
assert spec.tensor_meta is not None
|
|
return dtensor.DTensor(
|
|
res,
|
|
spec.mesh,
|
|
spec.placements,
|
|
shape=spec.tensor_meta.shape,
|
|
dtype=spec.tensor_meta.dtype,
|
|
requires_grad=res.requires_grad,
|
|
stride=spec.tensor_meta.stride,
|
|
)
|
|
|
|
if isinstance(res, torch.Tensor):
|
|
return to_dt(res, spec)
|
|
elif isinstance(res, (list, tuple)):
|
|
assert spec is not None and isinstance(
|
|
spec, (list, tuple)
|
|
), f"output spec does not match with output! Expected list/tuple, got {spec}."
|
|
res_list = []
|
|
for e, s in zip(res, spec):
|
|
# NOTE: local results might return Optional Tensor from ATen op, so we need
|
|
# to handle that case and make sure we don't wrap None with DTensor.
|
|
# (i.e. native_layer_norm.backward)
|
|
if isinstance(e, (list, tuple)) and isinstance(s, (list, tuple)):
|
|
res_list.append(type(e)([to_dt(ee, ss) for ee, ss in zip(e, s)]))
|
|
elif e is not None and s is not None:
|
|
res_list.append(to_dt(e, s))
|
|
else:
|
|
res_list.append(None) # type: ignore[arg-type]
|
|
|
|
return tuple(res_list) if isinstance(res, tuple) else res_list
|
|
else:
|
|
# if the res contains only non tensor values, we simply return it without rewrapping
|
|
return res
|
|
|
|
|
|
def pack_args_kwargs_with_local_tensor(
|
|
args: Union[ArgsType, KwargsType],
|
|
args_schema: Union[ArgsType, KwargsType],
|
|
redistribute_with_schema: bool = False,
|
|
) -> Union[ArgsType, KwargsType]:
|
|
flatten_args, args_tree_spec = tree_flatten(args)
|
|
flatten_args_schema, _ = tree_flatten(args_schema)
|
|
|
|
for i, arg in enumerate(flatten_args):
|
|
if isinstance(arg, dtensor.DTensor):
|
|
if redistribute_with_schema:
|
|
target_spec = flatten_args_schema[i]
|
|
arg = redistribute_dtensor(
|
|
arg, target_spec.mesh, target_spec.placements
|
|
)
|
|
|
|
# reuse the schema list and update it with local tensor
|
|
flatten_args_schema[i] = arg._local_tensor
|
|
|
|
return tree_unflatten(flatten_args_schema, args_tree_spec)
|
|
|
|
|
|
def _reshape_alias(
|
|
x: torch.Tensor, shape: Tuple[int, ...], strides: Tuple[int, ...]
|
|
) -> torch.Tensor:
|
|
return torch.ops.aten.view(x, shape)
|
|
|
|
|
|
_CURRENT_DECOMPOSITION_TABLE: Dict[Callable[..., object], Callable[..., object]] = {
|
|
torch.ops.aten._reshape_alias.default: _reshape_alias,
|
|
}
|
|
|
|
|
|
def operator_dispatch(
|
|
op_call: torch._ops.OpOverload,
|
|
args: Tuple[object, ...],
|
|
kwargs: Dict[str, object],
|
|
sharding_propagator: ShardingPropagator,
|
|
) -> object:
|
|
out, _, _ = _operator_dispatch(op_call, args, kwargs, sharding_propagator)
|
|
return out
|
|
|
|
|
|
def _operator_dispatch(
|
|
op_call: torch._ops.OpOverload,
|
|
args: Tuple[object, ...],
|
|
kwargs: Dict[str, object],
|
|
sharding_propagator: ShardingPropagator,
|
|
) -> Tuple[object, OpSchema, OutputSharding]:
|
|
# check that we are not getting mixed vanilla and Distributed tensors
|
|
arg_list, _ = tree_flatten(args)
|
|
mesh = None
|
|
for arg in arg_list:
|
|
if isinstance(arg, torch.Tensor) and not isinstance(arg, dtensor.DTensor):
|
|
raise RuntimeError(
|
|
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
|
|
" torch.Tensor to DTensor before calling distributed operators!"
|
|
)
|
|
|
|
if isinstance(arg, dtensor.DTensor):
|
|
if mesh is not None:
|
|
if mesh != arg.device_mesh:
|
|
raise NotImplementedError(
|
|
f"{op_call}: DTensor does not support cross-mesh operation yet!"
|
|
)
|
|
else:
|
|
mesh = arg.device_mesh
|
|
|
|
# unwrap the args/kwargs schema
|
|
op_schema = sharding_propagator.prepare_op_schema(op_call, args, kwargs)
|
|
|
|
output_sharding = sharding_propagator.propagate(op_call, op_schema)
|
|
|
|
# first we need to lift some private aten aliases to public calls
|
|
if op_call in _CURRENT_DECOMPOSITION_TABLE:
|
|
return (
|
|
_CURRENT_DECOMPOSITION_TABLE[op_call](*args, **kwargs),
|
|
op_schema,
|
|
output_sharding,
|
|
)
|
|
|
|
# if the schema suggestion from sharding prop is not the same instance as the
|
|
# input op_schema, it indicates a reshard, we need to redistribute the input
|
|
# tensors before calling the local op
|
|
assert output_sharding.schema_suggestions is not None
|
|
suggested_input_schema = output_sharding.schema_suggestions[0]
|
|
needs_redistribute = suggested_input_schema is not op_schema
|
|
|
|
if mesh is not None and mesh.get_coordinate() is None:
|
|
# For a non-participating device, we do:
|
|
# 1. if the return type is scalar, set the local result to None.
|
|
# The local results from all devices will then be all-gathered
|
|
# and a reduce op will be performed on the list of results
|
|
# with appropriate operators:
|
|
# for bool type, we by default use AND to reduce;
|
|
# we can extend for more ops if necessary.
|
|
# 2. if the return type is Tensor or List[Tensor], return empty
|
|
# tensor(s) with correct dtype.
|
|
spec = output_sharding.output_spec
|
|
ret_list = op_schema.func_schema.returns
|
|
if len(ret_list) != 1:
|
|
# returns list should only have one Argument
|
|
raise NotImplementedError(
|
|
f"function schema {str(op_schema.func_schema)} has"
|
|
f" return type that we currently don't support."
|
|
)
|
|
|
|
if spec is None:
|
|
# For a scalar return type, the non-participating device has None
|
|
# as its local result
|
|
local_results: object = None
|
|
else:
|
|
|
|
def default_tensor(spec: DTensorSpec) -> torch.Tensor:
|
|
if spec.tensor_meta is not None:
|
|
shape = spec.tensor_meta.shape
|
|
dtype = spec.tensor_meta.dtype
|
|
if len(shape) == 0:
|
|
# scalar tensor
|
|
return torch.zeros((), dtype=dtype)
|
|
else:
|
|
# non-scalar tensor
|
|
return torch.tensor([], dtype=dtype)
|
|
else:
|
|
raise RuntimeError(f"{spec} has no tensor metadata.")
|
|
|
|
if isinstance(spec, DTensorSpec):
|
|
# return a Tensor value
|
|
local_results = default_tensor(spec)
|
|
elif isinstance(spec, Sequence):
|
|
# return a List[Tensor] value
|
|
local_results = [
|
|
default_tensor(s) if s is not None else None for s in spec
|
|
]
|
|
assert isinstance(local_results, List)
|
|
if None in local_results:
|
|
ret_type = str(ret_list[0].type)
|
|
raise NotImplementedError(
|
|
f"return type {ret_type} in DTensor op is not supported"
|
|
)
|
|
else:
|
|
# compute locally with redistribute first if needed
|
|
local_tensor_args = pack_args_kwargs_with_local_tensor(
|
|
args,
|
|
suggested_input_schema.args_schema,
|
|
redistribute_with_schema=needs_redistribute,
|
|
)
|
|
local_tensor_kwargs = pack_args_kwargs_with_local_tensor(
|
|
kwargs,
|
|
suggested_input_schema.kwargs_schema,
|
|
redistribute_with_schema=needs_redistribute,
|
|
)
|
|
# run local op computation with potentially modified args/kwargs
|
|
local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
|
|
local_tensor_kwargs = cast(Dict[str, object], local_tensor_kwargs)
|
|
assert isinstance(mesh, DeviceMesh)
|
|
if _is_random_op(op_call) and is_rng_supported_mesh(mesh):
|
|
if not random._rng_tracker:
|
|
raise RuntimeError(
|
|
"A CudaRNGStateTracker instance must be instantiated "
|
|
"before executing a random op over a DTensor. "
|
|
"Try calling random.manual_seed() or distribute_tensor() "
|
|
"before executing a DTensor random op."
|
|
)
|
|
# For DTensor random operator, run it within a distribute region
|
|
with random._rng_tracker._distribute_region(arg_list[0]._spec):
|
|
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
|
|
else:
|
|
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
|
|
|
|
# communicate the result to all ranks for some operators that return scalar value
|
|
if output_sharding.output_spec is None:
|
|
if op_call == torch.ops.aten.equal.default:
|
|
obj_list = [None for _ in range(dist.get_world_size())]
|
|
dist.all_gather_object(obj_list, local_results)
|
|
obj_list = list(filter(lambda x: x is not None, obj_list))
|
|
# perform reduce on the collection with AND op
|
|
local_results = functools.reduce(operator.and_, obj_list, True)
|
|
|
|
if suggested_input_schema.is_inplace:
|
|
# inplace op should return self instead of re-wrapping
|
|
self = cast(dtensor.DTensor, args[0])
|
|
self._spec = cast(DTensorSpec, output_sharding.output_spec)
|
|
return self, op_schema, output_sharding
|
|
elif suggested_input_schema.is_out_variant:
|
|
# out variant could possibly have multiple out args (i.e. lu_unpack.out)
|
|
output_specs = (
|
|
(output_sharding.output_spec,)
|
|
if not isinstance(output_sharding.output_spec, tuple)
|
|
else output_sharding.output_spec
|
|
)
|
|
out_dts = []
|
|
spec_idx = 0
|
|
for arg in suggested_input_schema.func_schema.arguments:
|
|
if arg.is_out:
|
|
out_dt = cast(dtensor.DTensor, kwargs[arg.name])
|
|
out_dt._spec = cast(DTensorSpec, output_specs[spec_idx])
|
|
out_dts.append(out_dt)
|
|
spec_idx += 1
|
|
|
|
assert len(out_dts) >= 1, "out variant should have at least one out arg"
|
|
return (
|
|
tuple(out_dts) if len(out_dts) > 1 else out_dts[0],
|
|
op_schema,
|
|
output_sharding,
|
|
)
|
|
else:
|
|
return (
|
|
wrap(local_results, output_sharding.output_spec),
|
|
op_schema,
|
|
output_sharding,
|
|
)
|