pytorch/torch/distributed/tensor/parallel/api.py
Yuanyuan Chen a60d9e1f6d Fix flake8 B028 warnings (#166224)
This PR fixes flake8 B028 warning by specifying stacklevel=2 in `warnings.warn`. The advantage is that users can know more contextual information about PyTorch warnings.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166224
Approved by: https://github.com/ezyang
2025-10-26 06:18:55 +00:00

144 lines
6.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
import warnings
from fnmatch import fnmatch
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
from torch.distributed.tensor.parallel.style import ParallelStyle
__all__ = ["parallelize_module"]
def parallelize_module( # type: ignore[return]
module: nn.Module,
device_mesh: Optional[DeviceMesh] = None,
parallelize_plan: Optional[Union[ParallelStyle, dict[str, ParallelStyle]]] = None,
*,
src_data_rank: Optional[int] = 0,
) -> nn.Module:
"""
Apply Tensor Parallelism in PyTorch by parallelizing modules or sub-modules based on a user-specified plan.
We parallelize module or sub_modules based on a parallelize_plan. The parallelize_plan contains
:class:`ParallelStyle`, which indicates how user wants the module or sub_module
to be parallelized.
User can also specify different parallel style per module fully qualified name (FQN).
Note that ``parallelize_module`` only accepts a 1-D :class:`DeviceMesh`, if you have a 2-D or N-D :class:`DeviceMesh`,
slice the DeviceMesh to a 1-D sub DeviceMesh first then pass to this API(i.e. ``device_mesh[\"tp\"]``)
Args:
module (:class:`nn.Module`):
Module to be parallelized.
device_mesh (:class:`DeviceMesh`, optional):
Object which describes the mesh topology of devices for the DTensor.
If not specified, the call must be under a DeviceMesh context.
parallelize_plan (Union[:class:`ParallelStyle`, Dict[str, :class:`ParallelStyle`]], optional):
The plan used to parallelize the module. It can be either a
:class:`ParallelStyle` object which contains how we prepare
input/output for Tensor Parallelism or it can be a dict of module
FQN and its corresponding :class:`ParallelStyle` object. If not
specified, the call will do nothing at the moment.
Keyword args:
src_data_rank (int, optional): the rank of the source data for the logical/global tensor, it is used by
:meth:`distribute_tensor` to scatter/broadcast the shards/replicas to other ranks. By default,
we use ``group_rank=0`` on each DeviceMesh dimension as the source data to preserve the single-device
semantic. If passing ``None`` explicitly, :meth:`parallelize_module` simply uses its local data instead
of trying to preserve the single-device semantic via scatter/broadcast. Default: 0
Return:
A :class:`nn.Module` object parallelized.
Example::
>>> # xdoctest: +SKIP("distributed")
>>> from torch.distributed.tensor.parallel import parallelize_module, ColwiseParallel
>>> from torch.distributed.device_mesh import init_device_mesh
>>>
>>> # Define the module.
>>> m = Model(...)
>>> tp_mesh = init_device_mesh("cuda", (8,))
>>> m = parallelize_module(m, tp_mesh, {"w1": ColwiseParallel(), "w2": RowwiseParallel()})
>>>
.. note:: For complex module architecture like Attention, MLP layers, we recommend composing
different ParallelStyles together (i.e. ``ColwiseParallel`` and ``RowwiseParallel``) and pass
as a parallelize_plan, to achieves the desired sharding computation.
"""
torch._C._log_api_usage_once("torch.distributed.tensor.parallel.parallelize_module")
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
if parallelize_plan is None:
warnings.warn(
"No parallelize_plan is provided and auto-parallel is not supported "
"at the moment, so this parallelize_module call will do nothing.",
stacklevel=2,
)
return module
# note: The RNG tracker will be initialized in distribute_tensor() call if it hasn't
# been initialized.
if isinstance(parallelize_plan, ParallelStyle):
parallelize_plan.src_data_rank = src_data_rank
return parallelize_plan._apply(module, device_mesh)
elif isinstance(parallelize_plan, dict):
for module_path, parallelize_style in parallelize_plan.items():
if module_path == "":
# shortcut: empty string means to apply the plan to the current module
parallelize_module(module, device_mesh, parallelize_style)
continue
path_splits = module_path.split(".")
# Instead of blindly popping tokens, first check the match,
# we only consume/pop the token if we found a match.
token = path_splits[0]
matched_children = list(
filter(
# `t[0]` is child name
lambda t: fnmatch(t[0], token),
module.named_children(),
)
)
if not matched_children:
# No match at this level. Log a warning and process next plan entry.
warnings.warn(
f"Parallelize plan key '{module_path}' could not be resolved: "
f"no submodule matching token '{token}' in module {module}, "
f"skipping this plan entry.",
stacklevel=2,
)
continue
# Now that we have a match, we can consume the token.
path_splits.pop(0)
# apply the plan to all matched submodules
for _, submodule in matched_children:
if path_splits:
# we haven't reached the leaf, apply in dict style
leaf_path = ".".join(path_splits) # rest of the path after `token`
parallelize_module(
submodule,
device_mesh,
{leaf_path: parallelize_style},
src_data_rank=src_data_rank,
)
else:
# otherwise, directly apply style to this submodule
parallelize_module(
submodule,
device_mesh,
parallelize_style,
src_data_rank=src_data_rank,
)
return module
else:
raise TypeError( # pyre-ignore[7]
"Expect Union[ParallelStyle, Dict[str, ParallelStyle]] for"
f" parallelize_plan, {type(parallelize_plan)} found!"
)