mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This PR fixes flake8 B028 warning by specifying stacklevel=2 in `warnings.warn`. The advantage is that users can know more contextual information about PyTorch warnings. Pull Request resolved: https://github.com/pytorch/pytorch/pull/166224 Approved by: https://github.com/ezyang
174 lines
6.5 KiB
Python
174 lines
6.5 KiB
Python
# mypy: allow-untyped-defs
|
|
|
|
import warnings
|
|
import weakref
|
|
from functools import wraps
|
|
|
|
from torch.ao.pruning.sparsifier.base_sparsifier import BaseSparsifier
|
|
|
|
|
|
__all__ = ["BaseScheduler"]
|
|
|
|
|
|
class BaseScheduler:
|
|
def __init__(self, sparsifier, last_epoch=-1, verbose=False):
|
|
# Attach sparsifier
|
|
if not isinstance(sparsifier, BaseSparsifier):
|
|
raise TypeError(
|
|
f"{type(sparsifier).__name__} is not an instance of torch.ao.pruning.BaseSparsifier"
|
|
)
|
|
self.sparsifier = sparsifier
|
|
|
|
# Initialize epoch and base sparsity levels
|
|
|
|
self.base_sl = [group["sparsity_level"] for group in sparsifier.groups]
|
|
self.last_epoch = last_epoch
|
|
|
|
# Following https://github.com/pytorch/pytorch/issues/20124
|
|
# We would like to ensure that `scheduler.step()` is called after
|
|
# `sparsifier.step()`
|
|
def with_counter(method):
|
|
if getattr(method, "_with_counter", False):
|
|
# `sparsifier.step()` has already been replaced, return.
|
|
return method
|
|
|
|
# Keep a weak reference to the sparsifier instance to prevent
|
|
# cyclic references.
|
|
instance_ref = weakref.ref(method.__self__)
|
|
# Get the unbound method for the same purpose.
|
|
func = method.__func__
|
|
cls = instance_ref().__class__
|
|
del method
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
instance = instance_ref()
|
|
instance._step_count += 1 # type: ignore[union-attr]
|
|
wrapped = func.__get__(instance, cls)
|
|
return wrapped(*args, **kwargs)
|
|
|
|
# Note that the returned function here is no longer a bound method,
|
|
# so attributes like `__func__` and `__self__` no longer exist.
|
|
wrapper._with_counter = True # type: ignore[attr-defined]
|
|
return wrapper
|
|
|
|
self.sparsifier.step = with_counter(self.sparsifier.step) # type: ignore[assignment]
|
|
self.sparsifier._step_count = 0 # type: ignore[attr-defined]
|
|
self._step_count: int = 0
|
|
self.verbose = verbose
|
|
|
|
# Housekeeping
|
|
self._get_sl_called_within_step: bool = False
|
|
|
|
self.step()
|
|
|
|
def state_dict(self):
|
|
"""Returns the state of the scheduler as a :class:`dict`.
|
|
|
|
It contains an entry for every variable in self.__dict__ which
|
|
is not the sparsifier.
|
|
"""
|
|
return {
|
|
key: value for key, value in self.__dict__.items() if key != "sparsifier"
|
|
}
|
|
|
|
def load_state_dict(self, state_dict):
|
|
"""Loads the schedulers state.
|
|
|
|
Args:
|
|
state_dict (dict): scheduler state. Should be an object returned
|
|
from a call to :meth:`state_dict`.
|
|
"""
|
|
self.__dict__.update(state_dict)
|
|
|
|
def get_last_sl(self):
|
|
"""Return last computed sparsity level by current scheduler."""
|
|
return self._last_sl
|
|
|
|
def get_sl(self):
|
|
# Compute sparsity level using chainable form of the scheduler
|
|
# Note: This method is not intended to be called directly, and is only
|
|
# used by the ".step" method. Use .get_last_sl() instead.
|
|
if not self._get_sl_called_within_step:
|
|
warnings.warn(
|
|
"To get the last sparsity level computed by the scheduler, "
|
|
"please use `get_last_sl()`.",
|
|
stacklevel=2,
|
|
)
|
|
raise NotImplementedError
|
|
|
|
def print_sl(self, is_verbose, group, sl, epoch=None):
|
|
"""Display the current sparsity level."""
|
|
if is_verbose:
|
|
if epoch is None:
|
|
print(f"Adjusting sparsity level of group {group} to {sl:.4e}.")
|
|
else:
|
|
print(
|
|
f"Epoch {epoch:5d}: adjusting sparsity level of group {group} to {sl:.4e}."
|
|
)
|
|
|
|
def __repr__(self):
|
|
format_string = self.__class__.__name__ + " ("
|
|
format_string += "\n"
|
|
format_string += f"Sparsifier {self.sparsifier}\n"
|
|
format_string += f" base_sl: {self.base_sl}\n"
|
|
format_string += ")"
|
|
return format_string
|
|
|
|
def step(self, epoch=None):
|
|
# Raise warning if trying to call scheduler step before the sparsifier.
|
|
# https://github.com/pytorch/pytorch/issues/20124
|
|
if self._step_count == 1:
|
|
if not hasattr(self.sparsifier.step, "_with_counter"):
|
|
warnings.warn(
|
|
"Seems like `sparsifier.step()` has been overridden after sparsity scheduler "
|
|
"initialization. Please, make sure to call `sparsifier.step()` before "
|
|
"`scheduler.step()`.",
|
|
UserWarning,
|
|
stacklevel=2,
|
|
)
|
|
|
|
# Just check if there were two first scheduler.step() calls before sparsifier.step()
|
|
elif self.sparsifier._step_count < 1: # type: ignore[attr-defined]
|
|
warnings.warn(
|
|
"Detected call of `scheduler.step()` before `sparsifier.step()`. "
|
|
"You have to make sure you run the sparsifier.step() BEFORE any "
|
|
"calls to the scheduler.step().",
|
|
UserWarning,
|
|
stacklevel=2,
|
|
)
|
|
self._step_count += 1
|
|
|
|
class _enable_get_sl_call:
|
|
def __init__(self, o):
|
|
self.o = o
|
|
|
|
def __enter__(self):
|
|
self.o._get_sl_called_within_step = True
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self.o._get_sl_called_within_step = False
|
|
|
|
with _enable_get_sl_call(self):
|
|
self.last_epoch += 1
|
|
values = self.get_sl()
|
|
|
|
for i, data in enumerate(zip(self.sparsifier.groups, values)):
|
|
param_group, sl = data
|
|
param_group["sparsity_level"] = sl
|
|
self.print_sl(self.verbose, i, sl, epoch)
|
|
|
|
self._last_sl = [group["sparsity_level"] for group in self.sparsifier.groups]
|
|
self.sparsifier.enable_mask_update = True
|
|
|
|
def _make_sure_a_list(self, var):
|
|
r"""Utility that extends it to the same length as the .groups, ensuring it is a list"""
|
|
n = len(self.sparsifier.groups)
|
|
if not isinstance(var, (list, tuple)):
|
|
return [var] * n
|
|
else:
|
|
if len(var) != n:
|
|
raise ValueError(f"Expected variable of length {n}, but got {len(var)}")
|
|
return list(var) # We want the result to be in a list, not tuple
|