mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
* Created DefaultTensorOptions * Fix TensorOptions() call which was interpreted as function decl * Fix empty OptionsGuard * Make options_ and mutex_ in DefaultTensorOptions class static because of dynamic linker issues * Make DefaultOptions thread local
137 lines
4.0 KiB
C++
137 lines
4.0 KiB
C++
#include "catch.hpp"
|
|
|
|
#include <torch/tensor.h>
|
|
|
|
#include <ATen/Context.h>
|
|
#include <ATen/Functions.h>
|
|
#include <ATen/OptionsGuard.h>
|
|
#include <ATen/TensorOptions.h>
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
using namespace at;
|
|
|
|
// A macro so we don't lose location information when an assertion fails.
|
|
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
|
|
REQUIRE(options.device().type() == Device((device_), (index_)).type()); \
|
|
REQUIRE(options.device().index() == Device((device_), (index_)).index()); \
|
|
REQUIRE(options.dtype() == (type_)); \
|
|
REQUIRE(options.layout() == (layout_))
|
|
|
|
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
|
|
REQUIRE(tensor.device().type() == Device((device_), (index_)).type()); \
|
|
REQUIRE(tensor.device().index() == Device((device_), (index_)).index()); \
|
|
REQUIRE(tensor.type().scalarType() == (type_)); \
|
|
REQUIRE(tensor.type().layout() == (layout_))
|
|
|
|
TEST_CASE("TensorOptions/DefaultsToTheRightValues") {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
}
|
|
|
|
TEST_CASE("TensorOptions/ReturnsTheCorrectType") {
|
|
auto options = TensorOptions().device(kCPU).dtype(kInt).layout(kSparse);
|
|
REQUIRE(options.type() == getType(kSparseCPU, kInt));
|
|
}
|
|
|
|
TEST_CASE("TensorOptions/UtilityFunctionsReturnTheRightTensorOptions") {
|
|
auto options = dtype(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = layout(kSparse);
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = device({kCUDA, 1});
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = device_index(1);
|
|
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
|
|
|
|
options = dtype(kByte).layout(kSparse).device({kCUDA, 2}).device_index(3);
|
|
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
|
|
}
|
|
|
|
TEST_CASE("TensorOptions/ConstructsWellFromCPUTypes") {
|
|
TensorOptions options;
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
|
|
options = TensorOptions({kCPU, 0});
|
|
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
|
|
|
|
options = TensorOptions(kInt);
|
|
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
options = TensorOptions(getType(kSparseCPU, kFloat));
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
|
|
|
|
options = TensorOptions(getType(kSparseCPU, kByte));
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST_CASE("TensorOptions/ConstructsWellFromCPUTensors") {
|
|
auto options = TensorOptions(empty(5, kDouble));
|
|
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
|
|
|
|
options = TensorOptions(empty(5, getType(kSparseCPU, kByte)));
|
|
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
|
|
}
|
|
|
|
TEST_CASE("TensorOptions/ConstructsWellFromVariables") {
|
|
auto options = TensorOptions(torch::empty(5));
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
REQUIRE(!options.requires_grad());
|
|
|
|
options = TensorOptions(torch::empty(5, at::requires_grad()));
|
|
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
REQUIRE(!options.requires_grad());
|
|
}
|
|
|
|
TEST_CASE("Device/ParsesCorrectlyFromString") {
|
|
Device device("cpu:0");
|
|
REQUIRE(device == Device(kCPU, 0));
|
|
|
|
device = Device("cpu");
|
|
REQUIRE(device == Device(kCPU));
|
|
|
|
device = Device("cuda:123");
|
|
REQUIRE(device == Device(kCUDA, 123));
|
|
|
|
device = Device("cuda");
|
|
REQUIRE(device == Device(kCUDA));
|
|
|
|
std::vector<std::string> badnesses = {
|
|
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
|
|
for (const auto& badness : badnesses) {
|
|
REQUIRE_THROWS(Device(badness));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("OptionsGuard") {
|
|
Tensor tensor;
|
|
{
|
|
OptionsGuard guard(TensorOptions{});
|
|
tensor = at::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
|
|
{
|
|
OptionsGuard guard(TensorOptions().dtype(kInt));
|
|
tensor = at::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kInt, kStrided);
|
|
|
|
{
|
|
OptionsGuard guard(TensorOptions().dtype(kInt).layout(kSparse));
|
|
tensor = at::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kInt, kSparse);
|
|
|
|
{
|
|
OptionsGuard guard(requires_grad(true));
|
|
tensor = torch::empty({10});
|
|
}
|
|
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kFloat, kStrided);
|
|
REQUIRE(tensor.requires_grad());
|
|
}
|